Seat No.: _____

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

ME - SEMESTER-III • EXAMINATION - SUMMER • 2014

Subject Code: 735206 Date: 05-06-2014

Subject Name: Digital Signal Processing

Time: 02:30 pm - 05:00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Check whether the following systems are linear and time invariant or not $(i) y(n) = e^{x(n)}$

$$(ii) y(n) = a.x(n) + b$$

$$(iii)$$
 $y(n) = a.n.x(n) + b$

(b) Find the impulse response of the following systems, assuming y(n) = 0 for n < 0

(i)
$$y(n)-ay(n-1)=x(n-1)$$

(ii)
$$y(n)-y(n-1)-y(n-2)=x(n)$$

Q.2 (a) Discuss the following properties of Z Transform

07

- (i) Linearity
- (ii) Time Shift
- (iii) Convolution in time
- (iv) Multiplication by exponential
- (b) Use convolution in time property of z-transform to find x(n) if X(z) is given by 07

$$X(z) = \frac{1}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{4}z^{-1}\right)}$$

OR

- (b) Using partial fraction expansion method find the inverse z-transform of X(z) 07 given by $X(z) = \frac{4 8z^{-1} + 6z^{-2}}{(1 2z^{-1})(1 + z^{-1})}$
- Q.3 (a) Suppose that H(z) has zeros at $\frac{3}{4}e^{-j\pi/2}$ and $2e^{-j\pi/4}$. Determine the lowest degree H(z) that has a linear phase.
 - (b) State and describe Sampling Theorem for bandlimited signals. Explain 07 aliasing.

OR

- Q.3 (a) Explain Bilinear Transformation and Impulse Invariant Transformation methods for transforming X(s) to X(z)
 - (b) Let the system function of an analog system is given by $H(s) = \frac{\alpha}{\alpha + s}$, find the corresponding system function for a discrete time system H(z) using Bilinear and Impulse Invariant Transformation methods.

Q.4	(a)	Design an analog low pass Butterworth filter and obtain $H(s)$ with the	07
		following specifications:	
		(i) Passband Frequency: 500Hz	
		(ii) Stopband Frequency: 6000Hz	
		(iii) Passband attenuation(in dB): 1	
		(iv) Stopband attenuation (in dB): 60	
	(b)	Design an analog low pass Chebyshev filter with the order of the system given	07
	` '	by 4, and passband frequency given by 10Hz and passband ripple given by 1dB.	
		OR	
Q.4	(a)	Explain sine-cosine generator and comb filter.	07
	(b)	Explain what is phase distortion and show that the phase distortion in the output	07
	` ′	signal of a system is zero for a linear phase response system. Also show that an	
		FIR system with its impulse response symmetrical is a linear phase system.	
0.5	(-)		07
Q.5	(a)	If the system function of a low pass system is given by $H(z) = \frac{\alpha}{1 - az^{-1}}$, using	07
		frequency transformation method obtain the system function of the equivalent	
		Bandpass System.	
	(b)	Discuss the advantages and disadvantages of FIR system over IIR System.	07
		OR	
Q.5	(a)	Explain the Windowing method and Frequency Sampling methods for	07
		designing FIR Systems.	
	(b)	Sketch the following window functions based on their definitions:	07
		(i) Hamming Window	
		(ii) Hanning Window	
		(iii) Barlett Window	
