Seat No.:		Enrolment No		
Subject C Subject Na Time: 02:	MEST Code: me: F 30 pm	Radiation Heating and cooling System	SUMMER 2015	
2. I	Attem Make	pt all questions. suitable assumptions wherever necessary. es to the right indicate full marks.		
Q.	1 (a)	Explain following terms briefly.	07	
		(i) Radiant Cooling (ii) Mean Radiant Temperature		
	(b)	Explain with figure Heat Transfer Modes within an enclosed space fitted with Radiant Cooling System.	07	
Q		explain concept of 'Relative Temperature Relationship for forced an example system and radiant cooling system.	07	
	(b)	Explain with necessary figure Gagge Two-node Model for thermal comfort. OR	07	
	(b	 Write brief answers for followings. (i) Give definition of Radiation Intensity (<i>I</i>) with necessary figure. (ii) Derive λ_{max}T=2.898×10⁻³ mK with the help of Planck's law. 	07	
Q).3 (a	a particular point in the room.		
	(b	in Gue reaple and 2 numbers of light fixtures of 300 W each. The	07	
		OR	0.7	
(Q.3 (a	 Explain Plank's law and Wien's displacement law applied to radiant energy transfer phenomenon. 		
	(1	the change in total specific energy of the air if its velocity reduced to 3 m/s and brought to an elevation of 12 m. The air is cooled by 20 ⁰ C.	07	
	Q.4 (Describe briefly Spherical Harmonics and Monte Carlo methods as solution techniques for solving the Radiative Transfer Equations (RTE). 	07	
	(Explain following terms as characteristics of building materials. 	07	
		(i) Emissivity (ii) Absorptivity (iii) Transmissivity		

OR

07

Q.4 (a) Describe simplified Radiant Transport Function with schematic diagram.

	(b)	Explain following with necessary neat sketch.	07
		(i) Solid angle (ii) Blackbody radiation	
Q.5	(a)	Distinguish between Configuration Factor and Interchange Factor by giving	0
		suitable examples.	
	(b)	Define concept of energy balance in context to Radiant Cooling. Describe the	0
		important characteristics of control volume.	
		OR anniversal linear results	
Q.5	(a)	A thin plate receives radiation on one side from a surface at 650 ⁰ C and radiates on the other face to a surface at 150 ⁰ C. Determine the temperature of the plate.	0.
		Take F=1. Neglect convection heat flow.	
	(b)	Write short note on Modified Degree-Day method.	0.