Seat	No.:	Enrolment No	
Sub Sub Time	ject ject	GUJARAT TECHNOLOGICAL UNIVERSITY SEMESTER- II (Old course) • REMEDIAL EXAMINATION – SUMMER 2015 t Code: 1721802 Date:13/05/2015 Name: Treatment Process Design and Drawing 2:30 pm to 5:00 pm Total	
Instru	uction	s:	
	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Design a clariflocculator for average flow of 12 MLD.	14
Q.2	(a)	Define the following highlighting its significance in the design and operation of Clariflocculator: (i) Velocity gradient (ii) RPM of paddles	07
	(b)	With the help of a neat sketch explain any one flow measuring device.	07
		OR	
	(b)	Describe the procedure to find out the effective size and uniformity coefficients of sand to be used in RSF. Also write the method to determine $P_{toofine}$, $P_{toocoarse}$ and $P_{useable}$ from sand.	07
Q.3	(a)	Calculate the overall efficiency of a venture scrubber given following conditions:	14
		Liquid to good action of 1.14 lit/m2	

Liquid to gas ration :1.14 lit/m3 Throat velocity = 69.19 m/s

Particle density of fly ash=700 kg/m3 Gas viscosity=2.21 x10⁻⁵ kg/m-s

The particle size distribution data are given in table .Use k=1.125 and neglect the Cunningham factor effect.

dp	< 0.1	0.1-	0.5-	1.0-	5.0-	10.0-	15.0-	>20.0
microns		0.5	1.0	5.0	10.0	15.0	20.0	
Weight	0.01	0.21	0.78	13	16	12	8	50
%								

Q.3 (a) Determine the overall dust removal efficiency of the cyclone separator from the 14 following data:

(i) Composition of dust

(-)								
dp, μm	50	20	10	05	01			
Mass fraction	0.3	0.25	0.2	0.15	0.1			

- (ii) Diameter of cyclone=1.5m
- (iii) Temperature=20^oC
- (iv) Flow rate=5.5m³/sec
- (v) Configuration Factor=551.3
- (vi) Density of particle=1725kg/m³
- (vii) Dynamic viscosity=2.1 x 10⁻⁵ kg/m-s.
- Q.4 (a) Design a screen with screen chamber for average flow of 90 MLD. Assume suitable 14 data if required.

OR

Q.4 (a) Design a grit chamber (parabolic channel type) for a flow of $0.5 \text{m}^3/\text{sec}$.

14

14

14

Q.5 (a) The cumulative flow of wastewater reaching at the end of time period to a treatment plant in a day varies as shown in table. Determine the capacity of an equalization tank for the given flow variation. The given flow fluctuations are as under:

Time	0	2	4	6	8	10	12	14	16	18	20	22	24
Н													
Cum	0	30	50	80	110	120	130	150	162	180	198	200	220
Flow m ³													

OR

Q.5 (a) For ASP with recycle find the volume of aeration tank, sludge wasting rate, Recycle ratio and oxygen requirement to treat waste water with following characteristics:

Flow: 5000 m³/d BOD:3350 mg/L

Y: 0.45 Kd: 0.1 Ks: 20

SRT: 8 days

MLSS:2500 mg/L Check for F/M ratio.
