Enrolment No. Seat No.: **GUJARAT TECHNOLOGICAL UNIVERSITY** ME - SEMESTER- II (Old course)• REMEDIAL EXAMINATION - SUMMER 2015 **Subject Code: 1722309** Date:16/05/2015 **Subject Name: Numerical Methods** Time: 02:30 pm to 5:00 pm **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. Q.1 What is an error? Explain various types of errors in numerical computation **(a)** with proper examples. Derive the formula for generating approximations of the root by using Newton-**(b)** Raphson method. Use it to find a root of $x - 2\sin x = 0$ correct up to three significant figures taking $x_0 = \frac{\pi}{2}$. Q.2 Write an algorithm for Bisection method. **(a)** One real root of the equation $x - \cos x = 0$ lies between 0.5 and 1. Find the root correct up to two decimal places using bisection method. Water is flowing in trapezoidal channel at a rate of $Q=20 \text{ m}^3/\text{s}$. The critical **(b)** depth y for such a channel must satisfy the equation $0 = 1 - \frac{Q^2}{\alpha^{2}}B$ where $g= 9.81 \text{m/s}^2$, $A_c=$ the cross-sectional area (m²), and B = the width of the channel at the surface(m). For this case, the width and the cross-sectional area can be related to depth y by B=3 + y and $A_c = 3y + \frac{y^2}{2}$. Solve for the critical depth using false position taking initial guesses of $x_1=0.5$ and $x_u=2.5$ up to three iterations and calculate the relative approximate error in the last iteration. OR **(b)** Prove that Newton Raphson method is quadratic convergent method. Q.3 Discuss the pitfalls of Gauss Elimination method. Also, discuss techniques for **(a)** improving solutions. Solve the following system of linear equations by using Gauss Siedel Method: **(b)**

 $10x_1 + 2x_2 + x_3 = 9$ $2x_1 + 20x_2 - 2x_3 = -44$ $-2x_1 + 3x_2 + 10x_3 = 22$ Take $x_1 = 0$, $x_2 = 0$, $x_3 = 0$ as an initial guess and $e_s = 5\%$

OR

07

07

07

07

07

07

07

The following system of equations was generated by applying the mesh current Q.3 07 **(a)** law to a circuit:

> $60I_1 - 40I_2$ =200 $40I_1 + 150I_2 - 100I_3 = 0$ $-100I_2$ $+130I_3$ = 230

Solve for I_1 , I_2 , I_3 using matrix Inversion method.

(b) Explain and write an algorithm of Gauss Jordan Method.

- **Q.4** 07 **(a)** Describe the procedure to find the equation of a parabola $y = a_0 + a_1 x + a_2 x^2$ which best fits with the given points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ using least squares method.
 - **(b)** The growth rate of bacteria(n) in a culture after t seconds is given below. 07 4 5 t: 0 1 2 3 32 45 65 93 125 185 n:

Fit a curve of the form $n = ab^t$ and estimate n when t=2.5 seconds.

OR

Write an algorithm for Lagrangeøs Interpolation. **Q.4 (a)**

Given the values								
x:	x: 5		11	13	17			
f(x):	150	392	1452	2366	5202			
Evaluate f(0) using Lagrange interpolation formula								

Evaluate f(9) using Lagrange interpolation formula.

Use Newtonøs divided difference formula to the data given below to obtain a 07 (b) polynomial in x :

X:	-4	-1	0	2	5
f(x):	1245	33	5	9	1335

Q.5 Using geometrical interpretation derive formula for Trapezoidal Rule. **(a)** The velocity v(km/min) of a vehicle which starts from rest, is given at fixed intervals of time t(min) as follows:

t:	2	4	6	8	10	12	14	16	18	20
v:	10	18	25	29	32	20	11	5	2	0
Estimate approximately the distance severed in 20 minutes using Simpson t										

Estimate approximately the distance covered in 20 minutes using Simpsonøs $1/3^{rd}$ integration formula (when t=0, v=0).

Write an algorithm for Eulerøs method. (b) Using Runge-Kutta method of order 4, find y for x=0.1, given that $\frac{dy}{dx} = xy + y^2, \quad y(0) = 1$

OR

- Using modified Eulerøs method, find an approximate value of y when x=0.4, **Q.5** (a) 07 given that $\frac{dy}{dx} = \log(x+y)$, y(0) = 2 taking step size h=0.2.
 - Use finite difference approach with $\Delta x = 2$ to solve the boundary value **(b)** 07

problem
$$7\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - y + x = 0$$
, $y(0) = 5$ and $y(10) = 8$.

07

07

07

07