GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER- I (New course)• REMEDIAL EXAMINATION – SUMMER 2015

Sub Tir	ject Na ne: 1 ruction	Code: 2710002 me: Computational Method f 0:30 am to 1:00 pm is: Attempt all questions. Make suitable assumptions where Figures to the right indicate full m	ver nece		ical Eng		ing	e:12/05, l Mark				
Q.1	(a)	Find the transient motion of the	e massós	spring s	system m	odeled	by the	e ODE	07			
	(b)	2y'' + 4y' + 6.5y = 4sin1.5t Find Fourier coefficient of period	odic fun	ction					07			
		$f(x) = \begin{cases} -k & if -\pi < x < 0 \\ k & if 0 < x < \pi \end{cases}, f(x) = \begin{cases} -k & if -\pi < x < 0 \\ k & if 0 < x < \pi \end{cases}$:)				-			
Q.2	(a)	Using Laplace Transform solve: $y'' + 4y = 0$, $y(0) = 1$, $y'(0) = 6$										
	(b)	The function $f(x) = e^{2x} - e^x - 2$ has a zero in the interval [0,1]. Find this zero correct to four significant digits using Newtonøs method. OR										
	(b)	Find a change of variables that to a sum of squares and exp variables.	reduce	s the qu			-		-			
Q.3	(a) (b)	Find a matrix <i>P</i> that diagonalize Verify dimension theorem for	L		_				07 07			
		T(x, y, z) = (x + y - z, x - 2y +	+z,-2x			. ,						
Q.3	(a)	x + y + 2z = 9,							07			
		Solve $2x+4y-3z=1$, by Ga	ussian e	liminat	ion.							
	(b)	3x + 6y - 5z = 0 Find the initial acceleration (<i>at t</i> = 0 <i>sec</i>) using the given the table: 07										
	()	<i>Timet(sec)</i> :	$\frac{t = 0.3e}{0}$	5 5	10	15	20		07			
		Velocity v(m / sec):	0	3	14	69	228	;				
Q.4	(a)	The table below gives the tem heated rod. If $l = \alpha_u + \alpha_1 T$, find	-			-		n mm) of	a 07			
		$\begin{array}{c cccc} T & 20^{0}C & 30^{0}C \\ \hline & & 200.2 & 200.4 \\ \end{array}$	$40^{\circ}C$		$50^{0}C$	60 [°] C		$70^{\circ}C$				
	(b)	l800.3800.4Find the dominant eigen value offind the other eigen value also.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		300.7 by pow	800.9 ver meth		801.0 hence	07			

OR

1

Q.4 (a) Evaluate $\int_{c} F \cdot r' ds$, where *C* is the circle $x^{2} + y^{2} = 4$, z = -3, oriented 07 counterclockwise as seen by a person standing at the origin, and, with respect to right-handed Cartesian coordinates, $F = [y, xz^{3}, -zy^{3}] = yi + xz^{3}j - zy^{3}k$.

(b) Solve the differential equation :
$$x^2y'' - 4xy' + 6y = 21x^{-4}$$
 07

- Q.5 (a) A copper ball is heated to a temperature of 100°C and at time t = 0 it is 07 placed in water that is maintained at a temperature of 40°C. At the end of the 4 minutes the temperature of the ball is reduced to 60°C. Find the time at which the temperature of the ball is reduced to 50°C.
 - (b) Suppose that a manufactured product has 2 defects per unit of product 07 inspected. Using Poisson distribution, calculate the probabilities of finding a product without any defect, 3 defects and 4 defects.

Q.5 (a) Fit an equation of the form $y = ab^x$ to the following data:

07

<i>x</i> :	2 3		4	5	6	
<i>y</i> :	144	172.8	207.4	248.8	298.6	

(b) A class consist of 80 students, 25 of them are girls and 55 boys, 10 of them 07 are rich and remaining are poor. 20 of them are fair complexioned. What is the probability of selecting a fair complexioned rich girl?
