N Sul Sul Tir	/IE - S bject bject ne: 1	GUJARAT TECHNOLOGICAL UNIVERSITYEMESTER-I (New course)• REMEDIAL EXAMINATION – SUMMER 201Code: 2710501Date:12/05/202Name: Digital Signal Processing Algorithms.0:30 am to 1:00 pmTotal Marks: 7	5 15 70
Inst	truction 1. 2. 3.	ns: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a) (b)	Define: Causal system, Linear system, Time-variant system and Stable system. Also determine system $y(n) = Ax(n) + B$ is causal or non-causal, linear or non- linear and time-variant or time-invariant. Explain discrete wavelet transform and its application in DSP.	07 07
Q.2	(a)	Obtain the direct form I, direct form II, cascade, and parallel form structures for the following system $y(n) = \frac{3}{4}y(n-1) - \frac{1}{8}y(n-2) + x(n) + \frac{1}{3}x(n-1)$	07
	(b)	Justify with suitable example: A linear time-invariant system is stable if its impulse response is absolutely stable.	07
	(b)	The impulse response of a linear time-invariant system is $h(n) = \{1, 2, 1, -1\}$. Determine the response of the system to the input signal $x(n) = u(n) - u(n-3)$.	07
Q.3	(a) (b)	By means of the DFT and IDFT, determine the response of the FIR filter with impulse response $h(n) = \{1 \ 2 \ 3\}$ to the input sequence. State and explain properties of DFT	07 07
	(0)	OR	07
Q.3	(a)	Determine the circular convolution of the sequences: $x_1(n) = \{1 \ 2 \ 3 \ 1\}$ and $x_2(n) = \{4 \ 3 \ 2 \ 2\}$.	07
	(b)	Develop radix-2 FFT algorithm using decimation in time approach.	07
Q.4	(a) (b)	Explain Chirp-z transform algorithm. Explain the Bartlett: a nonparametric method for power spectrum estimation.	07 07
Q.4	(a) (b)	Explain ARMA model for power spectrum estimation. Compute the 8-point DFT of the sequence $x(n) = \{\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} 0 0 0 \}$ using radix-2 DIF algorithm.	07 07
Q.5	(a) (b)	Explain frequency sampling method for FIR filter design. Convert the analog filter with system function $H_a(s) = (s+0.1)/[(s+0.1)^2+16]$ into a digital IIR filter having a resonant frequency of $\omega_r = \pi/2$ by means of the bilinear transformation.	07 07
05	(a)	UR List the various methods of designing IIR filter Explain the bilinger	07
Q.3	(a)	transformation method of designing of IIR filter. How does this method	U/

overcome the limitation of other methods?

(b) Determine the order and the poles of a type I lowpass Chebyshev filter that has **07** a 1-dB ripple in the passband, a cutoff frequency $\Omega_p = 1000\pi$, a stopband frequency of 2000π , and an attenuation of 40 dB or more for $\Omega \ge \Omega_s$.
