GUJARAT TECHNOLOGICAL UNIVERSITYME - SEMESTER- I (New course)• REMEDIAL EXAMINATION – SUMMER 2015Subject Code: 2711304Date:12/05/2015Subject Name: Statistical Methods and Numerical Methods								
				Marks: 70				
	ictions	:	-					
	2. 1	Make	pt all questions. suitable assumptions wherever necessary. es to the right indicate full marks.					
Q.1	(a)		Solve the system of linear equations using LU – decomposition method by taking $l_{ii} = 1$; $i = 1, 2, 3$ to solve the equations :	07				
			3x + 2y + 7z = 4; $2x + 3y + z = 5$; $3x + 4y + z = 7$.					
	(b)		Apply Gauss ó Seidel method to solve 83x + 11y - 4z = 95; $7x + 52y + 13z = 104$; $3x + 8y + 29z = 71$.	07				
Q.2	(a)		Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ correct to three decimal places using Gaussian	07				
			quadrature three point formula. Hence find the values of $\log_e 2$.					
	(b)	(i)	Check whether system is consistent or not $2x-3y+z = -2$; $x-y+2z = 3$; $2x+y-3z = -2$.	03				
		(ii)	Decompose the tridiagonal system using Thomson method $\begin{bmatrix} 4 & -1 & 0 & 0 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 4 & -1 \\ 0 & 0 & -1 & 4 \end{bmatrix}$	04				
			OR					
	(b)		The following values of x and y are given : x: 1 2 3 4 y: 1 2 5 11 Find the cubic splines and evaluate $y(1.5)$ and $y'(3)$.	07				
Q.3	(a)		Given the values $x:$ 5 7 11 13 17 $f(x):$ 150 392 1452 2366 5202 Evaluate $f(9)$ using Lagrange method.	07				
	(b)	(i)		04				
	1	~ /		ó 60				
				0				
		/···	Students An article sector of the sector of					
		(ii)	An article manufactured by a company consists of two parts A a In the process of manufacture of A, 9 out of 100 are likely defective. Similarly, 5 out of 100 are likely to be defective manufacture of B. Calculate the probability that the assembled will not be defective.	to be in the				

1

Q.3 (a)

A market research firm is interested in surveying certain attitudes in a small community. There are 125 households broken down according to income. Ownership of company of telephone and ownership of a TV.

		with annual Rs.8,000 or	Household Income of less	with annual Rs. 8,000 or
	Telephone	No Telephone	Telephone subscriber	No Telephone
Own TV set	27	20	18	10
No TV set	18	10	12	10

- (1) What is the probability of obtaining a TV set owner drawing at random?
- (2) If household has income over Rs.8,000 and is a telephone subscriber, what is the probability that has a TV?
- (3) What is the conditional probability of drawing a household that has owns a TV, given that the household is a telephone subscriber?
- (4) Are the events *÷*ownership of a TVø and *±*elephone subscriberø statistically independent?
- (b)
- Solve the system of equations 4x - y - z = 3; -x + 4y - 3z = -0.5; -x - 3y + 5z = 0using Choleski method.
- Q.4 (a) (i) In a town 10 accidents take place in a span of 50 days. Assuming that 04 the number of accidents per day follows Poisson distribution, find the probability that there will be three or more accidents in a day.
 - (ii) A sample of 100 households in a village was taken and the average 03 income was found to be Rs. 628 per month with standard deviation of Rs. 50 per month. Find the standard error of mean and determine 99% confidence limits within which the income of all people in the village are expected to lie.
 - (b) A sample of 50 household in Gujarat showed monthly average 07 internet bill is Rs. 187, Monthly average internet bill of the India is Rs. 197 with standard deviation Rs.29. Test the hypothesis \pm the mean monthly internet bill in Gujarat is less than mean national billø at $\alpha = 0.01$.

OR

- Q.4 (a) (i) A grinding machine is so set that its production of shafts has an 04 average diameter of 10.10 cm and standard deviation of 0.20 cm. The product specifications for the shaft diameter is between 10.05 and 10.20 cm. What proportion of output meet the specifications presuming normal distribution.
 - (ii) The mean of binomial distribution is 20 and standard deviation is 4. 03Find n, p and q.
 - (b) A man buys 50 electric bulbs of -Philipsø and 50 electric bulbs of 07 -HMTø He finds that bulbs give an average life of 1500 hours with standard deviation of 60 hours and -HMTø bulbs gave an average life of 1512 hours with a standard deviation of 80 hours. Is there a significant difference in the mean life of two makes of bulbs?

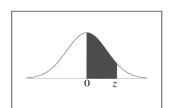
2

07

- Q.5 (a)
- Fit a second degree parabola to the following data:
- x: 1.0
 1.5
 2.0
 2.5
 3.0
 3.5
 4.0

 y: 1.1
 1.3
 1.6
 2.0
 2.7
 3.4
 4.1
- (b)

by each of	the shift	ts in a :	factory.
Shift	Good	Bad	Total
Day	900	130	1030
Evening	700	170	870
Night	400	200	600
Total	2,000	500	2,500


Is there any association between the shift and the quality of parts? $\chi_{0.05} = 5.991$ when degree of freedom is 2.

OR

Q.5	(a)	Fit the exponential curve $y = ae^{bx}$ to the following data:							
		<i>x</i> :	2	4	6	8			
		<i>y</i> :	25	38	56	84			
	(b)	Find the m	ultiple linear	regression	equation of	X_1 , X_2 and	I X ₃ from	07	
		the data relating to three variables given below:							
		\mathbf{X}_1	3 5	6	8	12	14		
		X_2	16 10	7	4	3	2		
		X_3	90 72	54	42	30	12		
	(b)	the data rel X ₁ X ₂	ultiple linear ating to thre 3 5 16 10	r regression e variables g 6 7	equation of	X_1, X_2 and 12		07	

Standard Normal Distribution Table

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549
0.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
0.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990
3.1	.4990	.4991	.4991	.4991	.4992	.4992	.4992	.4992	.4993	.4993
3.2	.4993	.4993	.4994	.4994	.4994	.4994	.4994	.4995	.4995	.4995
3.3	.4995	.4995	.4995	.4996	.4996	.4996	.4996	.4996	.4996	.4997
3.4	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4998
3.5	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998

Gilles Cazelais. Typeset with IMEX on April 20, 2006.