GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER- I (New course)• REMEDIAL EXAMINATION – SUMMER 2015

	ct Na 10: ctions 1. 2.	Code: 2711606Date:15/05/2ame: Energy and Mass Integration30 am to 1:00 pmTotal Marks: 70: 30 am to 1:00 pmTotal Marks: 70: 4ttempt all questions.Make suitable assumptions wherever necessary.Figures to the right indicate full marks.	2015
Q.1	(a)	What is stream splitting? Explain with example.	05
	(b)	Discuss importance of composite curves, HCC in HENS.	05
	(c)	Explain the concept of shifting composite hot curve to find out pinch point and minimum utilities.	04
Q.2	(a)	Explain optimum temperature driving force, $\hat{e} T_{opt}$ for design of heat exchanger network. Explain shortcut method to estimate it.	06
	(b)	Discuss the effect of minimum temperature driving force, $\hat{e} T_m$ in HENS.	04
	(c)	Explain the concept of multi effect distillation.	04
		OR	
	(c)	Discuss preheating or cooling of feed for energy integration in distillation	04

Q.3 Based on the information for the streams and utilities given below, estimate the fewest 14 number of heat exchangers needed if heat can be exchanged across the pinch. Use $\hat{e} T_m = 20 \text{ }^{\circ}\text{K}$.

Stream	T in ^o K	T _{out} °K	FC _p kW/ ^o K
Liquid, H1	430	340	15
Liquid, C1	310	395	7
Vapour, C2	370	460	32
Utilities:			
High Pressure Steam	500	500	
Low Pressure Steam	350	350	
Cooling Water	305	<325	

- \Rightarrow What will be the effect if heat is not allowed to flow through pinch?
- \Rightarrow Discuss the effect of changing the value of ΔT_m on network design.

OR

Q.3 Determine minimum utility targets and formulate MILP problem for the minimum number 14 of exchanger units for the hot and cold streams given below.

	Fcp (MW/K)	T_{in} (°C)	T_{out} (°C)
H1	1.2	300	110
H2	2.1	440	190
C1	1.5	180	400
C2	1.7	100	260

Use $\hat{e} T_{min} = 10 \ ^{\circ}C$

Q.4 (a) For the Heat Exchanger Network Synthesis (HENS) problem following stream 07 information is available:

Stream	T _{in} °K	T _{out} °K	FC _p kW/°K
Liquid, H1	430	340	15
Liquid, C1	310	395	7
Vapour, C2	370	460	32

Draw Hohmann / Lockhart Composite Curves and find out pinch point for ê $T_{\rm min}$ = 30 K.

(b) Determine the minimum utility consumption for the hot and cold streams given below using LP transshipment formulation.

	Fcp (MW/°K)	T _{in} (°K)	T _{out} (°K)
H1	1.8	450	350
H2	1.5	450	350
C1	1.3	320	400
C2	2.2	320	420

Heating Utility : 500 °K, Cooling Utility : 300 °K, ê T_{min} = 30 °K

OR

- Q.4 (a) Compare the sequential optimization and simultaneous optimization 05 approaches for HENS.
 - (b) Find out pinch point temperature for the following stream information using $\hat{e} T_{min}$ 09 = 15 °K:

	Fcp (MW/K)	T_{in} (°C)	T_{out} (°C)
H1	2.4	590	350
H2	1.5	470	200
C1	1.6	200	500
C2	1.6	150	430

- Q.5 (a) Explain composite curve method for Mass Exchanger Network Synthesis. 07
 - (b) To explore the possibilities for energy integration before designing a column 07 we need to prepare inter-cooling and inter-heating curve. Explain the step by step procedure to plot it for first column in a series of columns to separate a mixture of four hydrocarbons, C3 to C6 (C6 amount is large-about 65% in feed).

OR

- Q.5 (a) Explain the analogy of Heat Exchanger Network Synthesis and Mass 07 Exchanger Network Synthesis.
 - (b) Use of side stripper or enricher reduces net utility consumption as compared to 07 conventional distillation. Validate the statement by explaining the process on TQ diagram with examples.

07