GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER-II EXAMINATION – SUMMER 2015

Subject Code: 2721314 Date: 01/06/2					
	-	Name: Decision Models in Management			
Tii	-	2:30 PM to 05:00 PM Total Marks: 70			
1113	1. 2.	Attempt all questions. Figures to the right indicate full marks. Make suitable assumptions wherever necessary			
Q.1	(a)	Define: Infeasible solution, Unbounded solution, Degeneracy, Basic variable, Slack variable.	07		
	(b)	Solve the following LP problem graphically. Maximize $Z = 10x_1 + 6x_2$ Subject to, $x_1 + 2x_2 \ddot{O}8$, $3x_1 + x_2 \ddot{O}9$, $4x_1 \acute{o} x_2 \times 5$, $x_1, x_2 \times 0$.	07		
Q.2	(a)	Solve the following LP problem by Simplex method. Maximize $Z = 5x_1 + 6x_2$ Subject to, $2x_1 + 5x_2$ Ö26, $8x_1 - 4x_2$ Ö8, $3x_1$ ó x_2 Ö5, $x_1, x_2 \times 0$.	07		
	(b)	One unit of product A contributes Rs. 7/- and requires 3 units of raw material and 2 hours of labour. One unit of product B contributes Rs. 5/- and requires 1 unit of raw material and 1 hour of labour. Availability of the raw material at present is 48 units and there are 40 hours of labour. (a) Formulate it as a LP problem; (b) Write its dual.	07		
	(b)	OR Explain the procedure of converting LP problem from primal to dual. What are the advantages of solving dual?	07		
Q.3	(a)	Explain general structure of a queuing system; arrival process, service system, and queue structure.	07		
	(b)	Customers for a local bakery arrive randomly following Poisson process. The single sales man can attend customers at an average rate of 12 customer/hr, the service time being distributed exponentially. The mean arrival rate of the customers is 10/hr. Determine the following (a) the mean number of customers in the bakery (b) the mean time spent by a customer in the bakery (c) the expected number of customers waiting to be served (d) the mean waiting time of a typical customer in the queue OR	07		
Q.3	(a)	Discuss: FIFO, SIRO, Jockeying, Reneging, Balking.	07		

- (b) A toll plaza has 4 toll booths, each of them serves on an average 1.5 vehicle/min 07 (the service time being distributed exponentially). The arrival rate of vehicles to the toll plaza is 5 vehicle/min (follow Poisson distribution). Compute
 - (a) The probability that all the booths would be idle
 - (b) The probability that there shall be 6 vehicles in the toll plaza
 - (c) The average number of the vehicles waiting in a queue
 - (d) The average number of the vehicles being serviced
 - (e) The average time a vehicle spends waiting for service
 - (f) The average time a vehicle spends in the toll plaza.
- Q.4 (a) What is Transportation problem? Discuss the methods of finding initial feasible 07 solution of a transportation problem and state their advantages and disadvantages.
 - (b) Solve the following transportation problem. Cell values are in Rs. Find initial 07 feasible solution by North West Corner method and test the optimality by MODI method.

From	То				Supply			
	1	2	3	4				
1	8	8	5	12	70			
2	6	9	11	9	70			
3	10	15	6	13	100			
4	6	8	7	8	60			
Demand	60	80	70	90				

Q.4 (a) What is an assignment problem? Explain the Hungarian Assignment method.(b) Solve the following assignment problem for minimum cost.

07 07

07

07

Solve the following assignment problem for minimum cost.									
	А	В	С	D					
1	16	13	17	19					
2	12	14	13	16					
3	14	11	12	17					
4	15	10	14	13					

- Q.5 (a) Define simulation and its advantages. Discuss various application areas of 07 simulation.
 - (b) What is the shortest path problem? Write any one algorithm to solve this.

- Q.5 (a) Define the dynamic programming problem. Explain the application areas of 07 dynamic programming.
 - (b) Solve the following Integer LP problem Maximize $Z = 8x_1 + 6x_2$ Subject to, $2x_1 + 4x_2$ Ö11, $4x_1 - 2x_2$ Ö7,
 - $x_1, x_2 \times 0$ and integers.

OR