
Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

ME- SEMESTER II - EXAMINATION - SUMMER 2015

Sub Tin	ject]	Code: 2722001 Date:26/05/ 200 Name: Finite Element Method for Structural Engineering 30 PM - 5:00 PM Total Marks: 7	
Tilsti	1. 2.	Attempt all questions.	
Q.1	(a) (b)		07 07
Q.2	(a)		07
	(b)	polynomial functions.	07
	(b)	OR For a CST element having co-ordinates (1,1), (2,6) and (3,4), obtain the strainódisplacement matrix. Assume Poissonøs ratio is zero and Young's modulus is constant.	07
Q.3	(a)	Derive the expression for shape function for a two noded bar element taking natural coordinate as varying from -1 to 1.	07
	(b)	Determine the nodal displacement at node 2, stresses in each material and support reactions in the bar shown in Figure 1, due to applied force $P = 700$ kN.	07
		Where, $A_1 = 2200 \text{ mm}^2$, $A_2 = 1100 \text{ mm}^2$, $L_1 = 500 \text{ mm}$, $L_2 = 500 \text{ mm}$ $E_1 = 0.9 \times 10^5 \text{ N/mm}^2$ and $E_2 = 2.1 \times 10^5 \text{ N/mm}^2$.	
Q.3	(a)	921	07
	(b)		07
Q.4	(a)	What do you understand by axisymmetric problem? Explain type of stresses and strains induced in these type of problems.	07
	(b)	Enlist four software package of FE Analysis. List 2-D and plate elements used in any standard software.	07
Q.4	(a)	OR Elaborate the Pascaløs triangle and explain how it will be useful in the	07
	(b)	selection of displacement function. Explain the meaning of convergence and discuss various criteria to satisfy the convergence of problem.	07
Q.5	(a)		07
	(b)	find the shape function for this element. Elaborate on flexural vibration on beam elements. OR	07
Q.5	(a)		07
