Seat No.: Enrolment No GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER-II EXAMINATION – SUMMER 2015		
Subject Code: 2722013 Date: 01/06/2015 Subject Name: Plates and Shells		
Tin	ne: 02:30 PM to 05:00 PM Total Marks: 70	
Inst	ructions:	
	 Attempt all questions. Figures to the right indicate full marks. Make suitable assumptions wherever necessary 	
Q 1 (a) Q 1 (b)	Explain the superiority of curved elements compared to linear. Derive the value of stresses generated in a conical shell under udl and point load at crown.	[07] [07]
Q.2 (a) Q.2 (b)	Using membrane theory, derive the condition of equilibrium for doubly curved surfaces. Derive N and N for spherical dome due to self weight and live load uniformly distributed load. OR	[07] [07]
Q.2 (b)	Find displacement $\div w\emptyset$ of the crown and at the edge for a circular dome for the following data: $= 60^{\circ}$, $q = 2500 \text{ N/m}^2$, $r = 30 \text{ m}$, $t = 60 \text{ mm}$, $\mu = 0.2$, $E = 2 \times 10^5 \text{ N/mm}^2$. Also plot for N_1 and N_2 at the edge and $= 15^{\circ}$, 30° , 45° & 60° .	[07]
Q 3 (a) Q 3 (b)	Give the classification of shell based on shell curvature with neat sketches. Develop basic equation of membrane analysis of a paraboloid of revolution. Give stress function A ,	[07]
Q 3 (a)	Derive the equation of cylindrical bending in thin isotropic plate with small deflection theory.	[07]
Q 3 (b) Q 3 (c)	Explain the difference between thin plate and thick plate. Enlist all the stress resultants generated in a shell element with proper notations and meaning.	[04] [03]
Q 4 (a)	Derive the expression for deflection of a simply supported rectangular plate (a x b) subjected to uniformly distributed load of intensity $\delta q_o \delta$ using Navier solution. Also find the value of maximum defection for a square thin plate having 3 m x 3 m size. Take μ =0.3 and E= 2 x 10 ⁵ N/mm ²	[07]
O(1/1)		$\Gamma \cap T = 1$

Q 4 (b) Explain Finite difference method of solving rectangular shape plate problem. [07] OR

Q 4 (a) State the equilibrium equation for a plate of constant flexural rigidity ±Dø in polar [07] coordinates.

coordinates.

Q 4 (b) Define Neutral plane, anticlastic, synclastic, inplane resistance, Stiffness factor, Surface [07]

and Shell surface.

Q 5 (a) Explain different boundary conditions exist in plate theory with neat sketches and [07] necessary equations.

Q 5 (b) Derive the basic fourth order partial differential equation for a thin isotropic plate. [07]

OF

Q 5 (a) Enlist the various advantages and disadvantages of Navier solution and Leviøs Solution. [07]

Q 5 (b) Derive the expression for the deflection at center for simply supported square plate [07] subjected to hydrostatic pressure.