GUJARAT TECHNOLOGICAL UNIVERSITY ME- SEMESTER II– EXAMINATION – SUMMER 2015

Subject Code: 2722106Date: 28/05/2015Subject Name: Computational Fluid dynamics		ibject Name: Computational Fluid dynamics	
Time: 2:30 PM – 5:00 PMTotal Marks: 70Instructions:1. Attempt all questions.2. Make suitable assumptions wherever necessary.3. Figures to the right indicate full marks.			
Q.1	· ·	What is CFD ? How does a CFD code works ? Give classification of quasi linear partial differential equation. (Cramerøs Rule).	07 07
Q.2		By using Taylorøs series expansion derive 1. Second order central second difference Second order central difference for mixed derivatives.	07
	(b)	Derive $\left(\frac{\partial^2 u}{\partial x^2}\right)_{i,j} = \frac{-u_{i+2,j} + 16u_{i+1,j} - 30u_{i,j} + 16u_{i-1,j} - u_{i-2,j}}{12\Delta x^2} + O(\Delta x)^4$	07
	(b)	OR Derive (one sided) $\left(\frac{\partial u}{\partial x}\right)_{i,j} = \frac{1}{6\Delta y} \left(-11u_{i,j} + 18u_{i,j+1} - 9u_{i,j+2} + 2u_{i,j+3}\right) + O(\Delta x)^3$	07
Q.3	(a) (b)	Write short note on Adaptive Grids Explain Lax Wandroff Technique in brief	07 07
Q.3	(a) (b)	OR Explain Maccormackøs Technique in brief Show that the pressure correction formula is a central difference formulation of Poissonøs equation for the pressure correction.	07 07
Q.4	(a) (b)	Explain Finite Volume Method for one dimensional steady state conduction A property \emptyset is transported by means of convection and diffusion through the one – dimensional domain sketched in Figure – 1. The boundary conditions are $\emptyset_0 = 1$ at $x = 0$ and $\emptyset_L = 0$ at $x = L$ using five equally spaced cells and the central differencing scheme for convection and diffusion, calculate the distribution of \emptyset as a function of x for (i) Case – 1 u = 0.1 m/s and (ii) Case – 2 $u = 2.5 m/sOR$	07 07
Q.4	(a)	Consider the problem of source free heat conduction in an insulated rod whose ends are maintained at constant temperatures of 100°C and 500°C respectively. The one-dimensional problem sketched in Figure 6 2 is governed by $\frac{d}{dx}\left(k\frac{dT}{dx}\right) = 0$ Calculate the steady state temperature distribution in the road. Thermal conductivity k equals 1000 W/mK, cross 6 sectional area A is 0.001 m ²	07
	(b)	Explain One DimensionalUpwind difference scheme for Conduction ó Convection problem.	07
Q.5	(a) (b)	Explain SIMPLE algorithm(1) Discuss Implicit methods are unconditionally stable.(2) Disadvantage of Implicit approach.	07 07
Q.5	(a) (b)	OR Explain Staggered grid.	07
	(b)	Explain Quadratic Upstream Interpolation for Convective Kinetics	07

1

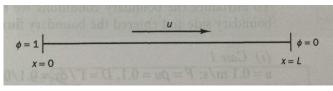


Figure – 1

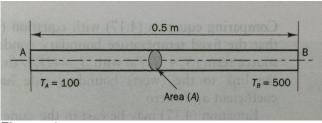


Figure - 2