Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER-II EXAMINATION – SUMMER 2015

Subject Code: 2724111 Subject Name: Statistical Signal Processing Time: 02:30 PM to 05:00 PM Instructions:

Date: 28/05/2015

Total Marks: 70

- 1. Attempt all questions.
 - 2. Make suitable assumptions wherever necessary.
 - 3. Figures to the right indicate full marks.
- Q.1 (a) Define: Gaussian Random Variables. List out the properties of Gaussian 07 Random Variables.
 - (b) Compute the autocorrelation for the given harmonic process x(n) = 07 $Asin(nw_0 + \varphi)$ where A and w_0 are fixed constants and has the probability density function of the form $f_{\varphi}(\alpha) = \begin{cases} \frac{1}{2\pi}; & -\pi \le \alpha < \pi \\ 0; & otherwise \end{cases}$
- Q.2 (a) Define: Stationary Process. List out the three conditions which required being 07 satisfied for a wide sense stationary process.
 - (b) Determine whether or not each of the following is valid autocorrelation 07 matrices. If they are not explain why not.

1.
$$R_{1} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

2.
$$R_{2} = \begin{bmatrix} 1 & 1+j \\ 1-j & 1 \end{bmatrix}$$

OR

- (b) Define power spectrum of a random process. Explain the properties of power 07 spectrum with suitable mathematical steps.
- Q.3 (a) State and derive Cramer Rao Theorem.

07

(b) Determine the mean and autocorrelation of the sequence x(n) generated by MA (2) process described by difference equation (n) = w(n) - 2w(n-1) + w(n-2). Where W(n) is white noise process with variance σ_w^2 .

OR

- Q.3 (a) Explain Bayesean estimators in detail with suitable mathematics. 07
 - (b) Explain Maximum Likelihood Estimator (MLE) and list out its properties. 07
- Q.4 (a) Let Let X_1, \ldots, X_N are Independent and Identically distributed Gaussian 07 Random sequence with known variance σ^2 and unknown mean . Suppose $\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} X_i$ which is unbiased. Find Cramer Rao bound and hence

show that μ is an efficient estimator.

(b) Derive the Wiener-Hopf equations and minimum mean square error for the 07 Noncausal IIR Wiener Filter.

- OR
- Q.4 (a) Explain Adaptive LMS Algorithm in detail with suitable mathematics.
 - (b) Determine the optimum linear predictor using FIR Wiener filter, for AR(1) 07 process x(n) that has an autocorrelation sequence given by $r_x(k) = \alpha^{|k|}$
- Q.5 (a) Explain Welch method for Power spectrum estimation with suitable 07 mathematics.
 - (b) Derive the minimum variance spectrum estimation with suitable mathematics. 07

OR

- Q.5 (a) Explain Bartlett method for Power spectrum estimation with suitable 07 mathematics.
 - (b) Explain the maximum entropy method for power spectrum estimation in detail. 07

07