Enrolment No._____

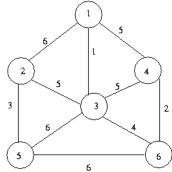
GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER- I (OLD course) • EXAMINATION – SUMMER 2015

Su Ti	Subject Code: 710201Date: 11/05/2Subject Name: Computer AlgorithmTime: 10:30 am to 1:00 pmTotal MarksInstructions:				
1115	1. 2.	Attempt all questions.			
Q.1	(a)	 Do as directed. 1. Given two positive functions f(n) and g(n). Prove or disprove the relation max(f(n), g(n)) = (f(n) + g(n)). 2. f(n) = 10n² - 3n + 8. Find the asymptotic tight bound for f(n). Also 	07		
	(b)	compute c_1 , c_2 and n_0 . Solve the following recurrences. 1. $T(n) = 2T(n/2) + n^2$ using recursion tree method. 2. $T(n) = 9T(n/3) + n$ using master method.	07		
Q.2	(a)	Write down the algorithm of counting sort. Illustrate the operation of counting sort on the array $A = \{(0, 2, 0, 1, 2, 4, 6, 1, 2, 2)\}$	07		
	(b)	sort on the array A = $\{6, 0, 2, 0, 1, 3, 4, 6, 1, 3, 2\}$. Mention properties of Red-Black tree. Insert the following elements into Red-Black tree. <10, 5, 8, 3, 2, 15> OR	07		
	(b)	Given n-key B-tree T of height h and minimum degree t × 2, where n × 1. Prove that h $\ddot{O}^{\log_t} \frac{n+1}{2}$	07		
Q.3	(a)	Mention the properties of Binomial trees. Prove each property by mathematical induction.	07		
	(b)	Insert the following elements in order into an empty B-tree of order 4. <100, 350, 200, 50, 400, 900, 650, 150, 550, 800>	07		
Q.3	(a)	OR Write down equation for Matrix-Chain Multiplication using Dynamic programming. Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is (30, 35, 15, 5, 10, 20, 25).	07		
	(b)		07		

(b) Given 6 jobs to be scheduled on a single processor. Job j requires t_j units of processing time and is due at time d_j. Job j starts at s_j and finishes at f_j = s_j + t_j. Lateness l_j = max {0, f_j ó d_j}. Schedule all the jobs on a single processor to minimize the lateness using greedy approach.

	j 1	j ₂	j ₃	j ₄	j 5	j ₆
t _i	3	2	1	4	3	2
dj	6	8	9	9	14	15

Q.4 (a) Explain accounting method of amortized analysis. Extend the explanation using 07 stack operations.


(b) Explain Dijkstraøs algorithm using example to find single-source shortest paths 07 in directed acyclic graph.

OR

Q.4 (a) Solve the following Knapsack problem using Dynamic Programming method. 07 Number of items n = 4 and capacity of knapsack W = 5.

Item	Weight (w)	Profit (p)
1	2	3
2	3	4
3	4	5
4	5	6

(b) Execute Kruskaløs algorithm for the below graph to construct a Minimum 07 Spanning Tree.

- Q.5 (a) Design and analyze an algorithm to solve 8-queen problem using backtracking 07
 - (b) Explain P and NP-class problems using example. The problem of visiting every 07 vertex of a graph exactly once is NP-complete or NP-hard problem?

OR

- Q.5 (a) Define spurious hits in Rabin-Karp string matching algorithm. Working modulo q = 11, how many spurious hits and valid hits does the Rabin-Karp matcher encounter in the text T = 3141592653589793 when looking for the pattern P = 26? What is worst case processing and matching time complexities of this algorithm?
 - (b) Answer the following questions.
 - 1. Given an undirected graph with n=7 vertices. Calculate the minimum amount of storage required for adjacency matrix.
 - 2. The Shortest Path problem satisfies the Principle of Optimality. Justify this statement.

07