Seat No.:	Enrolment No.
200111011	Zin omiene i tot

GUJARAT TECHNOLOGICAL UNIVERSITY

ME - SEMESTER- I (OLD course) • EXAMINATION - SUMMER 2015

	•	Code: /10422 Date:16/05/20)15
	-	Name: Digital Signal Processing and Applications 10:30 am to 1:00 pm Total Marks:	70
	me. tructio	1	70
	1.	Attempt all questions.	
		Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
	٥.	rigures to the right indicate full marks.	
Q.1	(a)	List the Properties of Z-Transform and Explain (1) Time Shifting and (2)	07
	(b)	Convolution Property of Z-Transform Derive the formula of Convolution Sum. Find linear and Circular Convolution	07
	(0)	of two sequences $X(n) = \{1,2,3,4\}$ and $h(n) = \{1,1,1\}$. Explain the difference	
		between linear and circular convolution.	
Q.2	(a)	Find DFT of sequence $x(n) = \{1,2,3,4,5,6\}$ using DIT ó FFT Algorithm	07
	(b)	Explain DIT FFT algorithm in detail. OR	07
	(b)	Explain DIF FFT algorithm in detail.	07
Q.3	(a)	Find Z- Transform along with ROC of	07
		1. $x(n) = (\frac{1}{2})^n u(n)$	
		2. $x(n) = (\frac{1}{2})^n (u(n) - u(n-10))$	
	(b)	Determine whether the unit step signal is an energy or power signal. OR	07
Q.3	(a)	List out properties of DFT. Explain any two property of DFT.	07
	(b)	Explain concept of windowing in the design of FIR filter. List various window	
	(0)	functions along with their expressions	U /
Q.4	(a)	A analog butterworth IIR low pass filter transfer function is give as	07
		$0.8 \le h(e^{jw}) \le 1 \qquad \qquad 0 \le w \le 0.2 \pi$	
		$h(e^{jw}) \le 0.2 \qquad 0.6\pi \le w \le \pi$	
		So determine digital butterworth IIR filter using Bilinear Transformation. Assume T = 1 second.	
	(b)	Derive Expressions of Symmetric and Anti-symmetric FIR filter	07
		OR	
Q.4	(a)	Explain Bilinear Transformation Technique for IIR filter Designing. Explain its	07
	(b)	limitation and solution. Find H(z) from H(s) using Impulse Invariant Method	07
	(6)	$H(s) = \frac{b}{(s+a)^2 + b^2}$	07
		$\frac{11(3)}{(s+a)^2+b^2}$	
Q.5	(a)	Difference between fixed point and floating point DSP processor	07
Q.J	(b)	Explain the concept of Sample Rate Conversion.	07
	()	OR	
Q.5	(a)	List out applications of Digital Signal Processing and Explain how Digital	07
	(b)	signal processing is used in RADAR signal processing. List types of signals. Explain	07
	(0)	1. Even and Odd signals	U /
		2. Deterministic and Random Signals	
		3. Multichannel and Multidimensional Signals	