Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER- I (OLD course)• EXAMINATION – SUMMER 2015

Subject Code: 712101 Date: 11/05/2013			15
Sul	oject	Name: Applied Thermodynamics and Heat Transfer	
Tin	ne: 1	0:30 am to 1:00 pm Total Marks: 70	
Inst	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a) (b)	State Kelvin-Planck and Clausius statement and prove that violation of Kelvin-Planck statement leads to violation of Clausius statement. Derive a relation for radiation exchange between black bodies separated by a non chearbing medium and obtain the relation for registrocity theorem.	07 07
0.2	(8)	$A_1F_{1-2} = A_2F_{2-1}$ What is Joule-Thompson coefficient ⁹ Discuss the zone of heating and	07
~	(u) (b)	cooling with the help of inversion curve. Explain the concept of phase rule and phase equilibrium for multi component system.	07
		OR	
	(b)	Discuss briefly Helmholtz and Gibbs function.	07
Q.3	(a) (b)	Derive Maxwelløs relations. What is meant by irreversibility ? How do you distinguish between irreversibility and unavailable energy ?	07 07
Q.3	(a) (b)	OR Explain Stefan-Boltzmannø law and Lambertø cosine law of radiation. In a straight tube of 60 mm diameter, water is flowing at a velocity of 12 m/sec. The tube surface temperature is maintained at 70 °C and flowing water is heated from the inlet temperature 15 °C to an outlet temperature of 45 °C. Calculate the following : (i) The heat transfer coefficient from the tube surface to the water (ii) Heat transferred, and (iii) Length of the tube The physical properties of water at its mean bulk temperature, 30 °C are : $= 995.7 \text{ kg/m}^3$, $C_p = 4.174 \text{ kJ/kg}$ °C, $K = 61.718 \times 10^{-2} \text{ W/m}$ °C, $= 0.805 \times 10^{-6} \text{ m}^2/\text{sec}$, $Pr = 5.42$ Use the relation, Nu = $0.023 \text{ (Re)}^{0.8} (Pr)^{0.333}$	07 07
Q.4	(a)	 Explain the physical significance of following dimensionless numbers: (i) Reynoldøs number (ii) Stanton number (iii) Grashoff number 	07
	(b)	Derive Von-Karmanø expression for convective heat transfer. OR	07
Q.4	(a)	Derive an expression for heat dissipation through a rectangular fin when the end of the fin is insulated.	07

- (b) A steel rod (K =32 W/m°C), 12 mm in diameter and 60 mm long, with an insulated end, is to be used as a spine. It is exposed to surroundings with a temperature of 60 °C and a heat transfer coefficient of 55 W/m² °C. The temperature at the base of fin is 95 °C. Determine :
 - (i) Fin efficiency
 - (ii) Temperature at the edge of the spine
 - (iii) Heat dissipation
- Q.5 (a) Explain briefly graphical method for solving two-dimensional steady state 07 heat conduction problem.
 - (b) A steel ball 50 mm in diameter and at 900 °C is placed in still atmosphere of 07 30° C. Calculate the initial rate of cooling of the ball in °C/min. Take : = 7800 kg/m³, C = 2 kJ/kg °C (for steel), h = 30 W/m² °C. Neglect internal thermal resistance.

OR

Q.5(a) Write a note on Reynoldøs analogy.07(b) Explain the concept of exergy and entropy.07
