Enrolment No.___

GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER- I (OLD course) • EXAMINATION - SUMMER 2015 Subject Code: 712102 Date: 12/05/2015

Subject Name: ADVANCED REFRIGERATION

Time: 10:30 am to 1:00 pm

Total Marks: 70

- Instructions:
 - 1. Attempt all questions.
 - 2. Make suitable assumptions wherever necessary.
 - 3. Figures to the right indicate full marks.
- (a) Explain the balancing of compressor and capillary tube in VCR system 0.1 07 and effects of unbalanced conditions in compressor-capillary tube system
 - (b) Name the alternative refrigerants to R12. In this context discuss the advantages 07 of using R134a in place of R12 in domestic Refrigerator.
- **Q.2** Describe the VCR cycle with P-h diagram having multiple evaporators with 07 **(a)** individual expansion valve and with individual compressor.
 - (b) Calculate the power required by the two compressors in an ammonia system 07 which servers a 250 kW evaporator at -25°C. The system uses two-stage compression with intercooling and flash gas removal. The condensing temperature is 35°C. The intermediate pressure in flash intercooler is equal to =

OR

- (b) In an ammonia system one evaporator is to provide 180 kW of refrigeration at 07 -30°C and another evaporator is to provide 200 kW at 5°C. The system uses two-stage compression with flash intercooling. The condensing temperature is 40°C. Calculate the power required by the compressors.
- (a) Explain with a neat sketch the working of a water-lithium bromide absorption **Q.3** 07 refrigeration system.
 - (b) A simple air cooled system is used for an aeroplane having a load of 9 TR. The 07 atmospheric pressure and temperature are 0.9 bar and 10°C respectively. During ramming pressure increases to 1.013 bar. In the heat exchanger, the temperature of air reduced by 55°C. The pressure in the cabin is 1.01 bar and the temperature of air leaving the cabin is 25°C. Determine: (i) power required to take the load of cooling (ii) COP of the system. Assume that all the expansions and compressions are isentropic. The pressure of the compressed air is 4 bar.

OR

- In an aqua ammonia absorption system, the highest and lowest pressures are 16 07 0.3 (a) bar and 3 bar respectively. The concentration of strong solution is 0.4 and degassing range is 0.1. With suitable assumption find COP for 10 TR machine. 07
 - (b) Describe with neat sketch a regenerative air-refrigeration system.
- 0.4 **(a)** The steam at 8 bar pressure saturated passes to steam ejector water vapour 07 refrigeration system. The temperature of water in flash chamber is 5°C. Make up water is supplied at 20°C. The absolute pressure in the condenser is 0.06 bar. The nozzle efficiency 86%, the entrainment efficiency is 64 % and compression efficiency is 80 %. The quality of the motive steam and flashed vapour mixed together at the beginning of compression is 90 % dry. Determine
 - (i) Mass of motive steam required per kg of flashed vapour
 - (ii) Refrigeration effect per kg of flashed vapour.
 - (b) Define Seebeck effects, Thomson effect and Peltier effect in connection with 07 thermoelectric refrigeration system.

Q.4	(a)	Describe the working of steam jet refrigeration system with the help of neat	07
		sketch.	
	(b)	Define the figure of merit related to thermo-electric refrigeration system and explain its effect on COP of the system	07
Q.5	(a)	Cite few industrial examples where heating and cooling is simultaneously required and explain why heat pump is more suitable for such applications	07
	(b)	Discuss different methods of food Freezing.	07
		OR	
Q.5	(a)	With neat sketch explain working of walk-in coolers.	07
	(b)	Explain the various methods of transport refrigeration.	07
