
GUJARAT TECHNOLOGICAL UNIVERSITY

ME - SEMESTER- III • EXAMINATION - SUMMER 2015 Subject Code: 732901 Date: 30/04/2015 Subject Name: Reliability and Maintainability Engineering Time: 2:30 pm to 5:00 pm **Total Marks: 70 Instructions:**

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1 (a)** Discuss bath-tub curve of system with reference to hazard rate. 07 07
 - Write a brief note on reliability prediction and allocation. **(b)**

Q.2 **(a)** Define the following terms and Discuss its significance. 07 (1) Reliability (2) MTTF

Three components are connected as shown in figure below. Each component is 07 **(b)** having reliability of $R(t) = e^{-\lambda t}$. Determine the overall reliability of the system. Also find MTTF of the system.

OR

A random variable X has the following discrete probability distribution 07 **(b)** function:

$X = x_i$	0	1	2	3	4	5	6	7
$P(X = x_i)$	0	k	k	k	0	2k	0	$7k^2 + k$

Find.

- (1) The value of k
- (2) P(X < 4)
- (3) $P(X \ge 2)$

Write a brief note on accelerated testing with respect to reliability engineering. Q.3 07 **(a) (b)**

Discuss about the reliability of system comprises the component in parallel. 07

OR

- **(a)** Q.3 Explain redundancy techniques in system design. Also discuss how system 07 reliability can be increased with redundancy?
 - A random variable X is uniformly distributed in range (-1, 1). Find, 07 **(b)** (1) pdf f(x).
 - (2) cdf F(x)
 - (3) Expected mean value E(x).
 - If another random variable y is defined as $y = x^2$, obtain probability density function of random variable y.
- Explain delta-star method for reliability evaluation with suitable example. **Q.4** 07 **(a)**

(b)	A missile launcher can hold 6 missiles. The probability that an individual missile	07
	is non-failed at missile launch is 90%. What is the probability (R) that at least 4	
	are non-failed when an operational demand occurs?	

OR

Q.4	(a)	Write a brief note on Poissonøs distribution. Discuss its significance	07
	(b)	Two capacitors are connected in series. Find the reliability of series connected capacitors.	07
Q.5	(a)	Explain part count method for evaluation of reliability of electronics system.	07
	(b)	Write a short note on Markov chain in reliability engineering.	07
		OR	
0.5	(a)	Discuss event state space method for reliability evaluation with illustration.	07

(a) Discuss event state space method for reliability evaluation with illustration.
(b) Explain Tie-set method for reliability evaluation with illustrative example.
07
