Seat No.: Enrolment No

GILIARAT TECHNOLOGICAL UNIVERSITY

ject Code: 7	740301	Date: 01/05/2015	
ject Name:	Advanced VLSI Design		
me: 2:30 pm to 5:00 pm structions:		Total Marks: 70	
 Attempt Make st 	t all questions. uitable assumptions wherever neo to the right indicate full marks.	eessary.	
Q.1 Implement the function $Z = X^3 + Y^3$ in verilog considering maximum time delay in the critical path of one 8 bit x 8 bit multiplier delay only. Assume Z X, and Y of 8-bit. Write verilog code and draw implementation diagram of the same. What is the throughput and latency of your design?		14	
Q.2 (s		ntation diagram to implement the boolean considering timing as the optimization re the throughput, latency and timing of	07
(0	b) What is the advantage and limitation of Write verilog code of dual edge trigger reset.		07
(1	 Draw the interface between burstable In-First-Out (FIFO) structure using har 	memory and a PCI bus, and explain First-	07
Q.3 (a	a) Draw RTL implementations for the implementations. (i) always @(posedge clk) begin L <= a1 & a2; out <= L a3; end	given verilog codes and justify your	06
	(ii) always @(posedge clk) begin L = a1 & a2; out = L a3;		
(1	end b) Draw timing diagram that shows all while checking functionality of i architecture. Write Verilog code of timing of this design.	signals observed in simulation window implementation of x^5 using pipelined the same. State throughput, latency and	08

Q.3 (a) Draw RTL implementations for the given verilog codes and justify your 06 implementations.

```
(i) always @(posedge clk) begin

out = L | a3;

L = a1 & a2;

end
```

```
(ii) reg y;

assign out = y;

always @(clk)

y = out ^ clk;

end
```

- (b) Draw timing diagram that shows all signals observed in simulation window while checking functionality of implementation of x⁵ using iterative architecture. Write Verilog code of the same. State throughput, latency and timing of this design.
- Q.4 (a) Implement the Boolean function Y= [{x1 (x3' + x2)}+ x5'] x4 using minimum area as an optimization criteria. Consider that synchronous set and reset D-flipflops are available as the FDS element in the device. Write verilog code and implementation diagram of the same. What are the throughput, latency and timing of your design? How?
 - (b) Draw RTL implementation for the given verilog code and justify your or implementation.

```
always @ (posedge clk) begin
    if(ctrl1) y<= ip1;
    if(ctrl2) y<= ip2;
end</pre>
```

OR

- Q.4 (a) What is the disadvantage of resource sharing? Draw RTL implementation for the given code with and without resource sharing option.
 - assign Y = (sel = 0)? i1+i2: (sel = 1)? i1+i3: i2+i3;
 - (b) What is the cause of static hazard on an asynchronous reset? With the help of necessary waveforms explain static-1 hazard condition while generating active low reset signal given by reset <= x1x2 + x2'x3. Give your suggestion to improve the design to prevent this hazard.
- Q.5 (a) With the help of verilog code and implementation diagram explain simple FSM and safe mode operated FSM.
 - (b) What do you mean by static timing analysis? Explain positive slack and 07 negative slack with the help of waveforms.

OR

- Q.5 (a) With the help of figures explain different methods to optimize floor planning.
 - (b) Why fully asynchronous reset is not preferred? Write verilog code for the asynchronous reset and justify your answer with the help of waveforms.

07

07