Seat No.: Enrolmen				
	GUJARAT TECHNOLOGICAL UNIVI	GUJARAT TECHNOLOGICAL UNIVERSITY		
	M.E –II st SEMESTER–EXAMINATION – JULY	- 2012		
Subj	ect code: 1710405 I	Date: 16/07/2012		
Subj	ect Name: Fiber Optic Communication			
Time	:: 10:30 am – 13:00 pm	Total Marks: 70		
	uctions:			
_				
	Attempt all questions.			
	Make suitable assumptions wherever necessary.			
3.	Figures to the right indicate full marks.			
Q-1(a))What are the advantages of fiber optic communication ?	07		
(1	A terries les leties active in des differences for an entire litter des			
(t	b)A typical relative refractive index difference for an optical fiber des Long distance transmission is 1%. Estimate the NA and the solid acc	•		
	Angle in air for the fiber when the core index is 1.46.further calculate	-		
	Angle at the core –cladding interface within the fiber. It may be assun			
	Concepts of geometric optics hold for the fiber.	ioù thut the		
$O_2(a)$	With post figures explain the refractive index profile and ray transm	ission in : 07		
Q-2(a)	With neat figures explain the refractive index profile and ray transm 1)Step index fiber.	1551011111. 07		
	2)Graded index fiber.			
	2)Graded index liber.			
(b)	A multi mode step index fiber with core diameter of 80µm and a relation	ative index 07		
	Difference of 1.5% is operating at a wavelength of 0.85 μ m.if the co			
	Index is 1.48. Estimate:			
	1)The normalized frequency for the fiber.			
	2)The guided modes.			
	OR			
(1	b)A graded index fiber has a core with parabolic refractive index prof	ile which has 07		
a	diameter of 50µm.the fiber has a numerical aperture of 0.2.estimate t	he total number of guided		
n	nodes propagating in the fiber when it is operating at a wave length of	1μm.		
Q-3(a	A graded index fiber with a parabolic refractive index profile core ha	as a refractive 07		
	Index at the core axis of 1.5 and a relative index difference of 1%.Est			
	maximum Possible core diameter which allows single mode operation	n at a wavelength		
	of 1.3µm.			
(t)Explain linear scattering losses in optical fiber.	07		
	OR			
Q-3(a)	Silica has an estimated fictive temperature of 1400K with an isothern	nal 07		
	Compressibility Of $7x10^{-11}$ m ² N ⁻¹ . The refractive index and the photo			
	co-efficient for silica are 1.46 and 0.286 respectively. Determine the t			
	attenuation in dB per kilometer Due to fundamental Rayleigh scatterin $1 - 201 + 10^{-23}$			
ä	at optical wavelength of 0.63,Boltzmann's constant is 1.381x10 ⁻²³ JK ⁻¹	•		
(t)Explain non linear scattering losses in optical fiber.	07		

Q-4 (a)What is intramodal dispersion ?Derive the equation for material dispersion Parameter M.	07
(b)A glass fiber exhibits material dispersion given by $ \lambda^2(d^2n_1/d\lambda^2) $ of 0.025. 07 Determine the material dispersion parameter at a wavelength of 0.85µm. And estimate the rms pulse broadening per kilometer for a good LED source With an rms spectral width of 20nm at this wavelength. OR	
Q-4 (a)Draw and explain the structure of edge Emitter LED.	07
 (b)A planner LED is fabricated from gallium arsenide which has refractive index of 3.6.[1] Calculate the optical power emitted into air as a % of internal optical power For the device when the transmission factor at the crystal-air interface is 0.68. [2]When the optical power generated internally is 50% of electrical power supplied Determine the external power efficiency. 	07
Q-5 (a) Draw and explain the structure of : 1.Front illuminated silicon P-I-N photo diode. 2.Side illuminated silicon P-I-N photo diode.	07
 (b) A photo diode as a quantum efficiency of 65% when photons of energy 1.5 X10⁻¹⁹J are incident upon it . 1)At what wave length is the photo diode operating? 2)Calculate the incident optical power required to obtain a photo current of 2.5µA when the photo diode is operating as described above. 	07
Q-5(a) With neat diagram explain the optical time domain refletometry (OTDR) or the Back scatter measurement method in optical fiber .Also give an illustration of a Possible Back scatter plot from a fiber under test.	07
(b) With neat schematic diagram explain the Modified Chemical Vapour Deposition (MCVD) method for the preparation of optical fiber.	07

* * * * *