	Sea	eat No.: Enrolment No		
		GUJARAT TECHNOLOGICAL UNIVERSITY		
		M.E –II st SEMESTER–EXAMINATION – JULY- 2012		
		bject code: 1721507 Date: 12/07/2	2012	
		oject Name: Advanced Steel Structure Design	=0	
		ne: 10:30 am – 13:00 pm Total Marks	s: 70	
		structions:		
		 Attempt all questions. Make suitable assumptions wherever necessary. 		
		3. Figures to the right indicate full marks.		
		4. IS 800:2007, IS 875 part I, II and III, IS 1893 and steel table are permitted.		
Q.1		A non-sway column of multistoried building frame with flexible joints is 4 m high	14	
		and subjected to the following load and moment:		
		 Factored moment at the top of column = 27 kN.m Factored moment at the bottom of column = 45 kN.m 		
		3. Factored axial load = 500 kN		
		Design suitable beam – column assuming $f_y = 250 \text{ N/mm}^2$. Take effective length of		
		the column as 0.8L along both axes.		
Q.2	(a)	Elaborate the advantages of cold form steel sections.	07	
	(b)	Explain the design steps of tension member made from cold form steel.	07	
	(L.)	OR	07	
	(b)	Explain the design steps of axially compressed column made from cold form steel.	07	
Q.3	(a)	Determine the wind pressure for a bridge of life span of 100 years of 60 m span,	07	
		located at Veraval. Also determine the design wind force in terms of width b of the		
	(b)	bridge. Write short note on 'Seismic Force Resisting Systems'.	07	
	(6)	OR	07	
Q.3	(a)	Determine seismic load on the structure for a three story building having following	07	
		data, located at Ghandhidham. Soil conditions are medium stiff and the entire		
		building is supported on a raft foundation. The steel frames are infilled with unreinforced brick masonry. Consider no live load at roof.		
		1 st Floor W = 3435 KN, 4 m above GL		
		2^{nd} Floor W = 2576 KN, 3 m above first floor		
	(3.)	3^{rd} Floor W = 1717 KN, 3 m above second floor.	0=	
	(b)	Explain the design criteria of steel structures under fatigue load.	07	
Q.4	(a)	Explain the analysis steps of plate girder bridge.	07	
	(b)	Explain the empirical method used for the design of cold form section for	07	
		compression member and state its limitations. OR		
Q.4	(a)	Explain the analysis steps of girder bridge.	07	
Q.4	(b)	Write short note on 'Effect on shear force on plastic moment capacity'.	07	
Q.5	(.)		07	
	(a)	List the various steps involved in the design of steel truss bridges for rail ways. How it will differentiate with road ways.	07	
	(b)	Make an algorithm for the analysis of rigid steel frame.	07	
	` /	OR		
Q.5	(a)	Explain the different steps to be followed while designing a beam-column of	07	
	(b)	multistoried building. Elaborate the load combination used for the design of steel bridges.	07	
	(0)	**************************************	97	