Se	at No.: Enrolment No		
Su	GUJARAT TECHNOLOGICAL UNIVERSITY M.E –II st SEMESTER–EXAMINATION – JULY- 2012 Subject code: 1721606 Date: 12/07/2012		
Ti	ibject Name: Chemical System Modeling & Simulation ime: 10:30 am – 13:00 pm Total Marks: 70 astructions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary.)	
(-)	3. Figures to the right indicate full marks. Define a Model. Cive elegation of modeling. Enlist stone of formulation of Chamical.	0'	
(a)	Define a Model. Give classification of modeling. Enlist steps of formulation of Chemical Engineering Model.	U	
(b)	For an unsteady state single stage solvent extraction, derive relation for fraction extracted with usual notations.	07	
(a)	N_0 gm of solid material was placed in W gm of water at time t_0 . The liquid was continuously stirred and maintained at constant temperature. At the end of very long period of time N_f gm of solid remains undissolved which can assumed as zero. The original solid consisted of S spheres each of initial diameter D_0 . Obtain variation of diameter of solid as function of time.	07	
(b)	Using method of least squares find a straight line that fits the following data	07	
	OR		
(b)	Formulate a model for concentration profile for fixed bed catalytic reactor with usual notations.	0'	
(a)	For a jacketed kettle heated through surface by condensing steam, develop a model for	0′	
(b)	variation of temperature with time. Formulate a model for temperature profile on a rectangular fin with usual notations listing all assumptions made.	07	
(a)	OR For consecutive reversible reactions in series	0'	
	$A \leftrightarrow B$ and $B \leftrightarrow C$ Derive relation for rate of disappearance of A, Number of moles of A and various rate constants		
(b)	Compute the fraction of solute that can be extracted in counter current solvent extraction at steady state with N stages (for values of N from 1 to 30) using the same numerical values of S=12R, m=1/8 and c=0.1 kg/m³, which are used for single stage extraction, compare and comment the results	0'	
(a)	Discuss sequential modular approach. List general purpose sequential modular program	07	
(b)	structured components A chemical process is represented by following set of equations $f_1(x_1, x_4) = 0; \ f_2(x_2, x_3) = 0; \ f_3(x_5) = 0; \\ f_4(x_5, x_6) = 0; \ f_5(x_1, x_2) = 0; \ f_6(x_3, x_4, x_6) = 0$ Determine Associated incidence matrix, digraph of the process and associated adjacency matrix	07	
(5)	OR	Λı	
(a)	Write briefly about Path tracing method (PTM).	0	

Q.1

Q.2

Q.3

Q.3

Q.4

Q.4

Q.5

Q.5

(b)

(a)

(a)

With neat flow chart discuss Kehat and Shacham algorithm

Write a brief note of Professional simulation package "Chemcad".

Discuss modularity and routing for prediction of VLE data

Compare various tearing algorithms in tabular form

Describe Barkley and Motard algorithm in detail.

07

07

07

07

07