	Sea	t No.: Enrolment No		
		GUJARAT TECHNOLOGICAL UNIVERSITY		
	C1	M.E –II st SEMESTER–EXAMINATION – JULY- 2012	13	
		oject code: 1721806 Date: 12/07/201		
		oject Name: Environmental Modeling ne: 10:30 am – 13:00 pm	7 0	
		tructions:	70	
		1. Attempt all questions.		
		2. Make suitable assumptions wherever necessary.		
		3. Figures to the right indicate full marks.		
Q.1	(a)	Define and differentiate between Black box model and white box model. Support your answers with appropriate example.	08	
	(b)	Enlist and explain the factors related to pollutant and receiver affecting the environmental modeling.	06	
Q.2	(a)	Describe and explain the relationship given as $C = C_0 \exp^{(kX/u)}$	07	
	(b)	What makes lake modeling different than river modeling? Cite appropriate example. OR	07	
	(b)	Enlist and explain the importance of conventional parameters in river modeling.	07	
Q.3	(a)	Define and explain the following terms with reference to pollutant transport: (i) Advection (ii) Diffusion (iii) Dispersion	07	
	(b)	Briefly explain modeling approach for conservative and non conservative parameters. OR	07	
Q.3	(a)	Explain with the help of neat sketch the concept of waste load allocation for a perennial river.	08	
	(b)	Briefly describe the transport of toxic chemicals in water.	06	
Q.4	(a)	Derive the equation for finding the steady state concentration of a pollutant discharged in to a lake.	07	
	(b)	Write down the stoichiometric equation for finding the primary productivity in the lake. Highlight the importance of stoichiometry in the water quality management in lakes.	07	
		OR	0=	
Q.4	(a)	Calculate the steady state concentration of a toxic chemical in the lake under following conditions. Assume a steady state (dC/dt=0) and constant volume (Qin = Qout) and a constant degradation rate of 50 kg/d. Cin= 100μ g/L. Qin=Qout= 10 m3/s	07	
		Reaction= -50Kg/day		
	(b)	Write a note on types of Environmental models.	07	
Q.5	(a)	Give the classification of lakes based on: (i) Biological zones (ii) Temperature variations	08	
	(b)	Write a note on 'Phosphorus as a limiting nutrient'.	06	
Q.5	(a)	OR Write a note on "Elements in a mass balance using control volume concept".	07	
V.S	(a) (b)	For a lake, it was observed that 0.7 µg per liter of phosphate was removed per day. Assuming the stoichiometric relationship for algal protoplasm, estimate the nutrient uptake rate for nitrate and CO ₂ . Also estimate the rate of algal production in one	07	

month.