	Seat	t No.: Enrolment No		
		GUJARAT TECHNOLOGICAL UNIVERSITY		
		M.E –II st SEMESTER–EXAMINATION – JULY- 2012		
	Sul	oject code: 1722308 Date: 12/07/2012	2	
	Sul	oject Name: Soft Computing		
	Tin	Time: 10:30 am – 13:00 pm Total Marks: 70		
		tructions:		
		1. Attempt all questions.		
		2. Make suitable assumptions wherever necessary.		
		3. Figures to the right indicate full marks.		
0.1	()		^=	
Q.1	(a)	How GA differs from traditional algorithms? Explain each step of solving any problem	07	
	(b)	using GA. What is ANN? Explain the statement "ANN does not give the exact solution for a	07	
	(0)	nonlinear problem. However it provides possible approximate solution to nonlinear	07	
		problems."		
Q.2	(a)	Find the weight matrix in bipolar form for the bidirectional associative memory using	07	
		outer products rule for the following binary input output vector pairs:		
		$s(1) = (1\ 0\ 0\ 0), \ t(1) = (\ 1\ 0)$		
		$s(2) = (1\ 0\ 0\ 1), \ t(2) = (\ 1\ 0)$		
		$s(3) = (0\ 1\ 0\ 0), \ t(3) = (\ 0\ 1)$ $s(4) = (0\ 1\ 0), \ t(4) = (\ 0\ 1)$		
		Also test the response of the network for input pattern		
		[1 0 -1 -1].		
	(b)	Write short note on: Simulated Annealing method.	07	
		OR		
	(b)	Explain how the training in Back propagation network (BPN) is done?	07	
Q.3	(a)	What is the significance of crossover and mutation in GA? Explain various forms of	07	
	(b)	crossover and mutation. What is feature mapping? Explain how the architecture of Learning Vector	07	
	(0)	Quantization differs from Kohonen Self-Organizing Feature maps.	U/	
		OR		
Q.3	(a)	Explain the classification of hybrid systems. Explain any one hybrid system.	07	
	(b)	Explain the fundamental architecture of ART network with its fundamental algorithm.	07	
Q.4	(a)	What do you mean by LR type fuzzy numbers? What are its applications? Explain	07	
	<i>(</i> 1)	architecture of fuzzy back propagation network.	0=	
	(b)	List the methods of Fuzzy Inference Systems. Explain any one in detail. OR	07	
Q.4	(a)	List defuzzification methods. Explain any three methods.	07	
Q.4	(b)	Explain the architecture and operation of Fuzzy Logic Control Systems.	07	
Q.5	(a)	With a case study example, describe in detail the applications of soft computing.	07	
	(b)	Write short note on: Selection methods in GA.	07	
		OR		
Q.5	(a)	Explain variations of standard back propagation algorithms.	07	
	(b)	Using your own intuition and definitions of universe of discourse, plot fuzzy	07	
		membership function for (1) Weight of people and,		
		(2) Frequency range of receivers.		
		() - 1 1 J		
