Seat No.:	Enrolment No
3eat 110	Linomient 10

GUJARAT TECHNOLOGICAL UNIVERSITY

M.E -IIst SEMESTER-EXAMINATION - JULY- 2012

Subject code: 1723002 Date: 09/07/2012

Subject Name: Advance Computer Aided Design

Time: 10:30 am – 13:00 pm Total Marks:

70

Instructions:

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Prepare the table for HCC and GCC. Explain the significance of GCC Curve with reference to 1 utilities requirement. Show the heat exchanger area calculation for H1 and C1 region. Assume $\Delta t_{\rm m} = 20^{\circ} {\rm K}$

Stream	FCp (KW/K)	Tin, K	Tout, K	Q available	h
				KW	W/m ² K
H1	10000	600	450	15,00,000	800
H2	10000	500	400	10,00,000	700
ST		650	650		5000
C1	15000	450	590	-21,00,000	600
CW		300	325		600

- 2 (a) Write the importance of ACAD in chemical engineering.
 - (b) Determine pinch point using Transshipment Model for the data given below.

Take Delta T = 10 deg. F.

Stream	Tin(deg.F)	Tout(deg.F)	FCp(BTU/Deg. F)
C1	60	180	3
C2	30	130	2.6
H1	180	40	2
H2	150	40	4
			OR

- (b) Prepare Expanded transhipment model for the above data and prepare MILP formulation.
- 3 (a) Determine the size of the vessels of a multi product batch plant that consists of three stages for manufacturing products A and B. Only one vessel is to be used in each stage. Production cycles of 1000 hrs consisting of two campaigns: one for A and one for B.

Data: Demands: A; 600000 kg/yr and B: 300000 kg/yr

Horizon time: 6000 hrs

Processing times : [hr]		Size factors				
	Stage 1	Stage 2	Stage 3	Stage 1	Stage 2	Stage 3
A	4	2	3	2	5	3
В	3	2	5	1.5	6	2

(b) A given batch plant produces one single product for which stage 1 requires 8 hours/batch, stage 2, 4 hours /batch and stage 3, 7 hours/batch. If zero-wait transfer is used, what is the cycle time? How many parallel units should be placed in each stage to reduce the cycle time to 2 hours?

14

4 10

10

8

6

(a) Given the processing times for three products A,B,C, below, determine with a Gantt chart the makespan and cycle time for manufacturing two batches of A, 1 of B, 1 of C for the following

Unlimited intermediate storage policy with sequence AABC and sequence BAAC.

	Processing times [hr]			
	Stage 1	Stage 2	Stage 3	
Α	5	4	3	
В	3	1	3	
C	4	3	2	
Zei	Zero-clean up times			

Explain in detail Parallel units and intermediate storage with example.

4 (a) Write a short note on Graphical Techniques for simple reacting systems.

(b) Explain in detail Various transfer policies for batch process scheduling.

(a) Write a short note on Geometric concepts for Reactor attainable region.

(b) Write a short note on simple sharp separator.

Discover the best sequence among those possible for the following 5 (a) problem of the mixture of five component label A, B, C,D, E system.

Sr. No.	Alcohol	Flow : mol/s	Relative volatilities
1	Α	1	4.31
2	В	0.5	3.95
3	С	1	3
4	D	7	2.1
5	Е	10	1

Explain the positioning of heat engine and heat pump.

Discuss T-Q diagram of four component species A,B, C and D for which ease of separation is (a) given below in the table.

Sr. No.	Species	Amount	Ease of separation
1	Α	lots	
2	В	Moderate amount	difficult
3	С	Moderate amount	Very easy
4	D	lots	Very very difficult

(b) Discuss the method for discovering the amount of heat to remove from the condenser and the reboiler.

6

8

7

7

7

7

7

7

7

7