Seat No.: Enrolment		Enrolment No		
		GUJARAT TECHNOLOGICAL UNIVERSITY	Y	
M.E –II st SEMESTER–EXAMINATION – JULY- 2012 Subject code: 1723906 Date: 12/07/2				
•			2/0//2012	
Subject Name: Computational Fluid Dynamics Time: 10:30 am – 13:00 pm Total M Instructions:			Total Marks: 70	
			viulis. 70	
2.	Mal	empt all questions. ke suitable assumptions wherever necessary. ures to the right indicate full marks.		
Q.1	(a)	Derive an expression for energy equation for small, moving fluid element.	07	
	(b)	Write short note on Finite volume method	07	
Q.2	(a)	What are the pressure correction techniques? Solve the following system of equations using Gauss Siedel Method; $3X_1+7X_2+13X_3=76$ $X_1+5X_2+3X_3=28$ $12X_1+3X_2-5X_3=1$ Use $(1,0,0)$ as the initial guess value. Compare your answer with true	07	
	(b)	solution $X_1=1$, $X_2=3$, $X_3=4$ Discuss different types of boundary condition necessary for solving the problem of CFD.	e 07	
		OR		
	(b)	Explain steps for solving the examples using FEM	07	
Q.3	(a)	Explain Delaunay Triangulation.	07	
	(b)	Explain C-Grid topology with suitable example OR	07	
Q.3	(a)	Explain Transfinite Interpolation for volume grid generation	07	
	(b)	Explain O-grid topology and H-grid topology	07	
Q.4	(a)	Write short note on Reynolds-Averaged Navier-Stokes Equations	07	
	(b)	Write and explain governing equation for combusting flow. OR	07	
Q.4	(a)	Write and explain governing equation for turbulant flow.	07	
Q.4	(b)	Write short note on general standard used for data exchange	07	
Q.5	(a)	Explain simple internal flow through driven cavity	07	
	(b)	Explain Car-Reacting flow in a gas burner.	07	

(a) Explain multi-phase flow in an air lift reactor.(b) Explain simple internal flow through T-Junction

Q.5

07 07