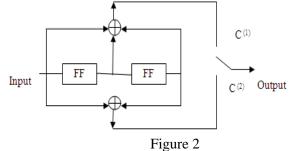

	Se	eat No.: Enrolment No	
		GUJARAT TECHNOLOGICAL UNIVERSITY	
		M.E –II st SEMESTER–EXAMINATION – JULY- 2012	
	S	ubject code: 1724103 Date: 10/07/2012	2
	S	ubject Name: Error Control Coding In Communication	
		ime: 10:30 am – 13:00 pm Total Marks: 70)
		nstructions:	
		1. Attempt all questions.	
		2. Make suitable assumptions wherever necessary.	
		3. Figures to the right indicate full marks.	
Q.1	(a)	(i) If C is a valid code vector, then prove that $CH^{T}=0$ where H^{T} is the transpose of the parity	04
		check matrix H.	
		(ii) Prove that all 2 ^k n-tuples of a coset have the same syndrome and the syndromes for different	03
		cosets are different.	
	(b)	Consider a systematic block code whose parity- matrix is	07
		$P = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$	
		$P = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$	
		1 1 0 1	
		(i) Find the generator matrix and parity-check matrix for this code.	
		(ii) How many errors can the code detect and correct?	
		(iii) Is the vector 10101010 a codeword?(iv) Draw the corresponding syndrome calculation circuit.	
Q.2	(a)	(i) Explain maximum likelihood decoding for error control coding	04
		(ii) Prove that Let $g(x) = g_0+g_1x+\ldots+g_{r-1}x^{r-1}+x^r$ be the nonzero code polynomial of minimum	03
		degree in (n, k) cyclic code C. then, the constant term g_0 must be equal to 1.	
	(b)	A (15,5) linear cyclic code has a generator polynomial	07
		$g(x) = 1 + x + x^{2} + x^{4} + x^{5} + x^{8} + x^{10}$	
		(i) Draw the block diagram of an encoder for this code.(ii) Find the code polynomial for the message polynomial	
		$D(x)=1+x^2+x^4$ in systematic form by listing the state of the registers.	
		(iii) Is $v(x) = 1 + x^4 + x^6 + x^8 + x^{14}$ a code polynomial?	
		OR	07
	(b)	Consider a (15,11) cyclic code generated by $g(x) = 1+x+x^4$. Devise a feedback shift register encoder circuit. Illustrate the encoding procedure with the message vector 10010110111 by	07
		listing the state of the registers and Draw the syndrome calculation circuit.	
Q.3	(a)	(i) Bring out advantages of cyclic code over linear block code	03
		(ii)Consider a (127,92) linear block code capable of triple error corrections	04
		I. What is the probability of message error for an uncoded block of 92 bits if the channel	
		symbol error probability is 10 ⁻³ ?	
		II. What is the probability of message error when using the (127,92) block code if the	
		II. What is the probability of message error when using the $(127,92)$ block code if the channel symbol error probability of 10^{-3} ?	
		channel symbol error probability of 10	
	(b)		07
		vector $r(x)=x+x^3+x^5$ by listing the state of the registers. Is it a code vector? If no, then correct	
		using Meggitt decoder circuit. OR	
Q.3	(a)	Draw the general block diagram of Meggitt decoder circuit and explain its operation	07
	(b)	Consider the (3,1,2) convolutional code with $g^{(1)} = (110), g^{(2)} = (101)$ and $g^{(3)} = (111)$.	07
		 (i) Draw the encoder block diagram. (ii) Find the generator matrix 	
		(ii) Find the generator matrix(iii) Find the code-word corresponding to the information sequence (11101) using time-domain	
		and transform domain approach.	
		••	


(b) Consider the convolution encoder shown in figure 1. the code is systematic.

- (i) Draw the state diagram
- (ii) Draw the code tree.
- (iii) Find the encoder output produced by the message sequence 10111.
- (iv) Verify the output using time-domain approach.

OR

- **Q.4** (a) What are RS codes? How are they formed?
- Q.4 (b) For the convolutional encoder shown in figure 2.

- (i) Draw the state and trellis diagrams and determine the output digit sequence for the data digits 10111.
- (ii) Use viterbi's algorithm to decode the received sequence: 1001011000 and find the message.
- Q.5 (a) Explain MAP algorithm.
 - (b) (i) write a short note on interleaved codes
 - (ii) Figure 3 shows a turbo encoder. The message bit sequence to encode is $m=1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0$ **04** with leftmost bit entering the encoder first. The bit position change by the interleaver is shown in figure. Find out encoded output sequence.

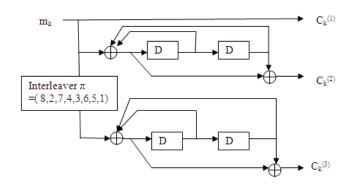


Figure 3

OR

- **Q.5** (a) Explain EG-LDPC code.
 - (b) For m=3, there exists a (7,4) code generated by $g(x)=1+x+x^3$. Suppose that it is shorten by one 07 digit.
 - (i) Draw the block diagram of an encoder
 - (ii) Draw the block diagram of a decoder
 - (iii) Is the vector 101010 a codeword? If no, the correct it.

07

07

07 07

07

03

07

2