
GUJARAT TECHNOLOGICAL UNIVERSITY

M.E –II st SEMESTER–EXAMINATION – JULY- 2012				
	Subject code: 1724301 Date: 067/2012			
	Subject Name: Finite Element Method in Geotechnical Engineering			
	Time: 10:30 am – 13:00 pm Total Marks: 70			
	Instructions:			
1. Attempt all questions.				
		Make suitable assumptions wherever necessary.		
		Figures to the right indicate full marks.		
Q.1	(a)	Enlist four application of Finite Element Analysis in Geotechnical Engineering domain.	04	
	(b)		06	
	(c)	Explain the step " Discretize and Select the Element Types " by suitable illustrations.	04	
Q.2	(a)	Using polynomial functions (generalized coordinates), determine shape functions for a two noded beam element.	07	
	(b)	Using the theorem of minimum potential energy, derive the expression for element stiffness matrix $K = \int B^T DB dV$.	07	
	(b)	What do you understand by axsymmetric problem? Explain type of stresses and strains induced in these type of problems.	07	
Q.3	(a)	Distinguish between a plane stress and plane strain problem giving suitable example. Also give their strain-stress linking matrices.	07	
	(b)	Explain the term "element aspect ratio".	03	
	(c)	Briefly explain various methods available to reduce memory requirement in	04	
		storing stiffness matrix.		
Q.3	(\mathbf{a})	OR	07	
Q.3	(a)	Derive expressions for natural coordinates in a CST element. Show that they are nothing but area coordinates.	07	
	(b)	For a CST element having co-ordinates (0,0), (6,12) and (12,0), obtain the strain–displacement matrix. Assume Possion's ratio is zero and Young's modulus is constant.	07	
Q.4	(a)	Derive the expression for shape function for a two noded bar element taking natural coordinate ζ as varying from -1 to 1.	07	
	(b)	For the bar assemblages shown in fig.1, determine the nodal displacements, the forces in each element, and the reactions.	07	
Q.4	(a) (b)	Using Lagrange polynomial find shape functions for two noded bar element For pin-jointed truss shown in fig.2, determine unknown displacements using FEM.	07 07	
Q.5	(a)	(i) Enlist useful software of FE Analysis.(ii) Discuss roll of computer in FE Analysis.	07	
	(b)	(iii) Discuss on convergence of solution.For a beam shown in fig.3, determine unknown displacements using FEM.OR	07	
Q.5	(a) (b)	Derive strain-displacement matrix for bar element. Obtain the stiffness matrix of a tapered bar element of length L and Young's Modulus E whose cross-sectional area varies linearly along the longitudinal direction.	07 07	

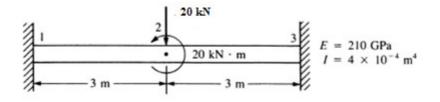


Fig.3