GUJARAT TECHNOLOGICAL UNIVERSITY

M.E –Ist SEMESTER–EXAMINATION – JULY- 2012

Subject code: 710107N

Subject Name: Quantum Theory & Algorithm Design

Time: 2:30 pm – 05:00 pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- Q.1 (a) Suppose

$$|\Psi\rangle = 3|0\rangle - 2i|1\rangle, |\emptyset\rangle = |0\rangle + 5|1\rangle$$

- (i) Show that these states obey the Cauchy-Schwarz and triangle inequalities.
- (i) Normalize the states.
- (b) Write the algorithm for LUP- DECOMPOSITION and 07 solve the equation.
 - $\begin{pmatrix} 1 & 5 & 4 \\ 2 & 0 & 3 \\ 5 & 8 & 2 \end{pmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} = \begin{pmatrix} 12 \\ 9 \\ 5 \end{pmatrix}$

Using LUP decomposition.

Q.2 (a)

(i) Show that the set

$$|a\rangle = \begin{pmatrix} 1\\2 \end{pmatrix}, |b\rangle = \begin{pmatrix} -1\\1 \end{pmatrix}, |c\rangle = \begin{pmatrix} 5\\4 \end{pmatrix}$$

Is linearly dependent; that is, one of the vectors can be written as a linear combination of the other two.

(ii) Explain cardinality of the set. The set of natural numbers divisible by 7 and 9 are countable or uncountable?

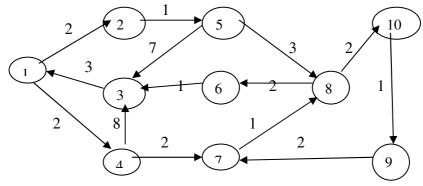
(b)

(i)Explain positive definite matrices and show that for any 04 matrix A with full column ranks the matrix $A^T A$ is positive definite. 03

(ii)Explain

- a) ORTHONORMAL BASIS SET.
- b) Important properties of trace.

OR


Date: 07/07/2012

Total Marks: 70

04

07

(b) List the shortest path from vertex 1 to each vertex of figure. 07 Use greedy method.

Q.3 (a) Suppose that a system is in the state

$$|\psi\rangle = \sqrt{\frac{2}{3}}|0\rangle + \frac{1}{\sqrt{3}}|1\rangle$$

(i) Compute Tr (ρ) and Tr (ρ^2). Is this a mixed state ?

(ii) Find <X> for this state.

(**b**) Find
$$X^{\bigotimes} Y|\psi>$$
 where

$$|\psi\rangle = \frac{|0\rangle|1\rangle - |1\rangle|0\rangle}{\sqrt{2}}$$

OR

(a) Describe the action of operators $P_0 \otimes I$ and $I \otimes P_1$ on the state 07 Q.3

$$|\psi\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}}.$$

- (b) A three state system is in the state 07 $|\psi\rangle = \frac{1}{2}|0\rangle + \frac{1}{2}|1\rangle - \frac{i}{\sqrt{2}}|2\rangle$
 - Write down necessary projection operators and calculate the probabilities Pr(0), Pr(1) and Pr(2)
- Q.4 (a) For the density matrix given by $\rho = \frac{1}{5} \begin{pmatrix} 3 & 1-i \\ 1+i & 2 \end{pmatrix}$ Is this a mixed state? (A) Find<X>,<Y> and <Z> for this state. **(B)**
 - Use the divide and conquer strategy on merge sort to 07 **(b)** illustrate the operation on the array A=(3,41,52,26,38,57,9,49) And write the algorithm.

07

07

07

2

Q.4 (a) A System is in the state

$$|\psi\rangle = \frac{1}{\sqrt{8}}|00\rangle + \sqrt{\frac{3}{8}}|01\rangle + \frac{1}{2}|10\rangle + \frac{1}{2}|11\rangle$$

- (a) What is the probability that measurement finds the system in state $|\Phi\rangle = |01\rangle$?
- (b) What is the probability that measurement finds the first qubit in the state 10>? What is the state of system after measurement?
- (b) What is the difference between recursive and iterative 07 solution of 0/1 knapsack problem using dynamic programming
- Q.5 (a)

(i) How the problem of single source shortest paths with **04** negative casts will be solved?

(ii) Determine a suitable value for the hash functions **03** division D when linear probing is used.

- a) N=50, $S_n \le 3$, $U_n \le 20$
- b) N =500, $S_n \le 5$, $U_n \le 60$
- **(b)**

(a)

Q.5

(i) Draw the Huffman tree for the weights 04
Frequencies [3,7,9,12,15,20,25]
(ii) How will an element be searched, an element be 03

inserted and deleted from binary search trees.

OR

(i) write the breath first search algorithm for graph 04 searching

03

(ii) Let T be an ordered tree with more than one node. Is it possible that the preorder traversal of T visiting the nodes in the same order as the post order traversal of T? If so, give an example; otherwise argue why this cannot occur. Likewise, is it possible that the preorder traversal of T visits the nodes in the postorder traversal of T? If so, give an example; otherwise argue why this cannot occur.

(b)

(i) Write the algorithm for Euler tour traversal of a binary 04 tree.03

(ii) When a binary relation is antisymmetric? Give example of a relation that is reflexive, transitive but antisymmetric.
