Seat No.: \_\_\_\_\_

Enrolment No.\_\_\_\_\_

| <b>GUJARAT TECHNOLOGICAL</b> | <b>UNIVERSITY</b> |
|------------------------------|-------------------|
|                              |                   |

| M.E –I <sup>st</sup> SEMESTER–EXAMINATION – JULY- 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|
| Subject code: 710703N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date: 09/07/2012 |  |
| Subject Name: Modern Control System<br>Time: 2:30 pm – 05:00 pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total Marks: 70  |  |
| <ol> <li>Instructions:         <ol> <li>Attempt all questions.</li> <li>Make suitable assumptions wherever necessary.</li> <li>Figures to the right indicate full marks.</li> </ol> </li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |  |
| <ul><li>Q.1</li><li>(a) Explain why do we need state variable approach to control system analysis? How it is superior to classical approach?</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (7)              |  |
| (b) Find the inverse of the given matrix $ \begin{bmatrix} 1 & 2 & 0 \\ 3 - 1 - 2 \\ 1 & 0 - 3 \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (4)              |  |
| <ul> <li>(c) Show that every square matrix can be expressed as the sum of symmetric matrix</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tric (3)         |  |
| <ul> <li>Q.2</li> <li>(a) Develop a state space model for the electric network shown in fig.1 ta V<sub>1</sub>(t), V<sub>2</sub>(t) and i(t) as the state variables.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | king (7)         |  |
| (b) Obtain the state space model for the mechanical system shown in fig.2<br>OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 (7)            |  |
| (b) The transfer function of a system is given by<br>$\frac{Y(s)}{U(s)} = \frac{s^2 + 2s + 3}{s^4 + 2s^2 + 3s^2 + 5s + 7}$ Obtain the following state representation of this system in<br>(a) Controllable canonical form (b) Observable canonical form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (7)              |  |
| <ul> <li>Q.3</li> <li>(a) Explain the method of finding state controllability and output controllaboration of continuous time systems.</li> <li>(b) Consider the system described by the following <ul> <li>\$\begin{bmatrix} x^1 \\ x^2 \end{bmatrix} = \begin{bmatrix} 1 &amp; 1 \\ -2 &amp; -1 \end{bmatrix} &amp; x^1 \\ x^2 \end{bmatrix} = \begin{bmatrix} 1 &amp; 1 \\ -2 &amp; -1 \end{bmatrix} &amp; x^1 \\ x^2 \end{bmatrix} = \begin{bmatrix} 1 &amp; 1 \\ -2 &amp; -1 \end{bmatrix} &amp; x^1 \\ x^2 \end{bmatrix} = \begin{bmatrix} 1 &amp; 1 \\ -2 &amp; -1 \end{bmatrix} &amp; x^1 \\ x^2 \end{bmatrix} = \begin{bmatrix} 1 &amp; 1 \\ -2 &amp; -1 \end{bmatrix} &amp; x^1 \\ x^2 \end{bmatrix} = \begin{bmatrix} 1 &amp; 1 \\ 1 &amp; x^2 \end{bmatrix} &amp; x^1 \\ 1 &amp; y = [1 &amp; 0] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} &amp; y^1 \\ y_1 \\ y_2 \end{bmatrix} &amp; y^1 \\ y_1 \end{bmatrix} &amp;</li></ul></li></ul> |                  |  |
| Q.3<br>(a) For the electrical network shown in fig.3 choose state variables as $e_1$ a and prove that system is uncontrollable (i.e. voltage across $R_3$ cannot be influenced by $e_0$ ) if $R_1C_1 = R_2C_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • •              |  |

| (b) The state variable model for a SISO system is given below $ \begin{bmatrix} x \\ 1 \\ x 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -5 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \qquad y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} $ Determine the transfer function of the system | (5)            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Q.4<br>(a) Find the state transition matrix for the state equation given below.                                                                                                                                                                                                                                                                                                        | $(\mathbf{f})$ |
| (a) Find the state transition matrix for the state equation given below $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$                                                                                                                                                                               | (6)            |
| <ul> <li>(b) Explain positive definite, negative definite, positive semi-definite and negative semi-definite scalar function with suitable illustrations</li> <li>OR</li> </ul>                                                                                                                                                                                                        | (8)            |
| Q.4                                                                                                                                                                                                                                                                                                                                                                                    |                |
| (a) Prove that the system must be completely state controllable for arbitrary pole placement                                                                                                                                                                                                                                                                                           | (6)            |
| (b) Design a state feedback controller given by the equation $\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u}$<br>where $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix}$ and $B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$<br>The desired closed loop pole locations are $s = -2 \pm j4$ and $s = -10$                                                        | (8)            |
| 0.5                                                                                                                                                                                                                                                                                                                                                                                    |                |
| Q.5<br>(a) Explain the method of determining stability by applying Liapunov's                                                                                                                                                                                                                                                                                                          | (6)            |
| direct method<br>(b) Apply Liapunov direct method to determine the stability of the system<br>$\vec{x_1} = -2x_1 + 2x_1^2x_2 + 3x_2$<br>$\vec{x_2} = -x_1 - 2x_1^2x_2 - 3x_2$                                                                                                                                                                                                          | (4)            |
| Select V = $x_1^2 + (x_1 + x_2)^2$ as the Liapunov function                                                                                                                                                                                                                                                                                                                            |                |
| (c) Explain the method of determining Liapunov function                                                                                                                                                                                                                                                                                                                                | (4)            |
| (c) Explain the method of determining Erapunov function<br>OR                                                                                                                                                                                                                                                                                                                          | (ד)            |
| Q.5                                                                                                                                                                                                                                                                                                                                                                                    |                |
| <ul> <li>(a) Apply Krasovski method to assess stability of the equilibrium point x(0) of the system given below</li> </ul>                                                                                                                                                                                                                                                             | (7)            |
| $\dot{x_1} = -x_1, \qquad \dot{x_2} = x_1 - x_2 - \frac{x_2}{2}$                                                                                                                                                                                                                                                                                                                       |                |

 $\dot{x_1} = -x_1,$   $\dot{x_2} = x_1 - x_2 - \frac{x_2}{3}$ (b) What is an observer? With the help of block diagram explain full order (7) state observer. Also obtain the observer error equation.

\*\*\*\*\*\*\*

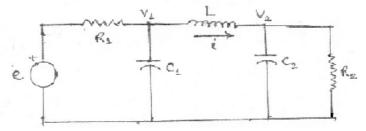
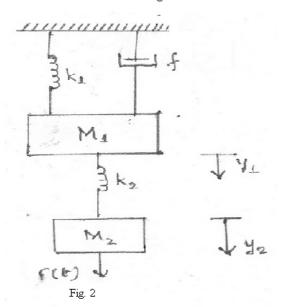
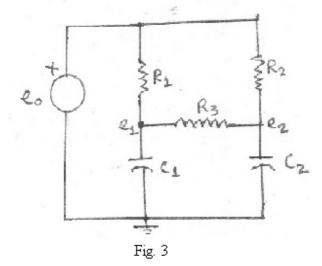





Fig 1



