Enrolment No.

Date: 09/07/2012

Total Marks: 70

GUJARAT TECHNOLOGICAL UNIVERSITY

M.E -Ist SEMESTER-EXAMINATION - JULY- 2012

Subject code: 710903N

Subject Name: Engineering Optimization

Time: 2:30 pm – 05:00 pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- (a) Design a tank for minimum surface area. The tank is closed at both the 07 **Q.1** ends and is required to have the volume V. The radius R and height H are to be selected as the design variables. Assume simplified objective function as $f(X)=R^2+RH$.
 - (b) Define : Explain necessary and sufficient conditions for the optimization 07 problem for the following conditions
 - 1. Optimization problem containing single variable
 - 2. Optimization problem containing multi variables
- (a) Find the solution for the following problem using Lagrangian method: Q.2 07 $f(x,y)=Kx^{-1}y^{-2}$ subjected to $g(x,y)=x^{2}+y^{2}-A^{2}=0$. Where, K and A are constants. 07
 - (b) State the difference between following entities
 - 1. Continuous variable and discrete variables
 - 2. Single objective optimization and multi objective optimization
 - 3. Quadratic programming and geometric programming

OR

(b) Explain the significance of saddle point for multivariable optimization 07 problem with an appropriate example.

Q.3 (a) Explain step wise procedure for the Fibonacci method. 07

(b) Derive the optimal solutions from the Kuhn-Tucker conditions for the 07 following problem: Minimize $f(X)=2x_1+3x_2-x_1^2-2x_2^2$ subjected to: $x_1+3x_2 \le 6$, $5x_1+2x_2 \le 10$, $x_1 \ge 0, x_2 \ge 0.$

OR

- (a) Explain step wise procedure for golden section method Q.3 07 Minimize $f(X) = x_1^2 + x_2^2$, subjected to : $x_1 + x_2 \ge 4$, $2x_1 + x_2 \ge 5$, $x_1 \ge 0$, $x_2 \ge 0$ (b) 07
 - using Kuhn-Tucker conditions.
- Q.4 (a) What do you understand by a gradient of a function. Explain its 07 significance in the field of optimization.
 - (b) Solve following optimization problem using Cauchy method 07 Minimize $f(X)=x_1-x_2+2x_1^2+2x_1x_2+x_2^2$ by assuming starting point as (0,0). OR
- (a) Differentiate between Primal and Dual expressions (with mathematical 07 0.4 expressions) for less than equalities used for geometric programming.
 - (b) What do you understand by 'penalty method'? Which are the different 07 penalty function methods? Explain any one in detail.

tion? Also 07
07
07
07
nc ¹ 1.