Seat N	[o.:	Enrolment No.	
Scat 1		GUJARAT TECHNOLOGICAL UNIVERSITY	
		M.E –I st SEMESTER–EXAMINATION – JULY- 2012	
•		ode: 711101N Date: 05/07/2012	
Subj	ect N	ame: Advanced Thermodynamics and Heat Transfer	
1 1			
Instr			
		mpt all questions.	
		te suitable assumptions wherever necessary. The right indicate full marks.	
	_	al notations are used	
0.4			
Q.1	(a)	Define (i) compressibility factor (ii) reduced co-ordinates. Explain with neat sketch general compressibility chart.	07
	(b)	Explain in detail different types of Phase Equilibrium diagram on p-T surface,	07
		h-s surfaces, and T-s surfaces	
Q.2	(a)	Differentiate clearly between the following:	
		(i) Diathermal wall and adiabatic wall,(ii) Isolated and closed systems and	
	(b)	Establish the equivalence of Kelvin-Plank and Clausius statements.	07
		OR	
	(b)	Derive the two $T.ds$ equations as stated below:	07
		$Tds = C_{p}dT - T\left(\frac{\partial v}{\partial T}\right)_{p} dp \ and \ Tds = C_{v}\left(\frac{\partial T}{\partial p}\right)_{v} dp + C_{p}\left(\frac{\partial T}{\partial v}\right)_{p} dv$	
Q.3	(a)	Establish the general differential equation in Cylindrical co-ordinates for 3-D unsteady heat conduction	07
	(b)	The temperature distribution across a wall, 1 m thick at a certain instant of time is given	07
		as: $T(x) = 900 - 300x - 50x^2$, Where T is in degree Celsius and x is in meters	
		The uniform heat generation of 1000 W/m ³ is present in wall of area 10 m ² having the	
		properties $\rho = 1600 kg / m^3$, $k = 40 W / m.K$ and $C = 4 kJ / kg.K$	
		1. Determine the rate of heat transfer entering the wall $(x = 0)$ and leaving the wall	
		(x=1m)	
		2. Determine the rate change of internal energy of the wall OR	
Q.3	(a)	What is lumped capacity? What are the assumptions for lumped capacity analysis?	07
	(b)	What are Heisler Charts? Explain their significance in solving transient conduction problems.	07
Q.4	(a)		07
	(b)	examples. What do you understand by entropy transfer? Why is entropy transfer associated with	07
	(n)	What do you understand by entropy transfer? Why is entropy transfer associated with	U/

heat transfer and not with work transfer?

OR

Q.4 (a) What is Reynold analogy? Describe the relation between fluid friction and heat transfer. **07** (b) Define Grashof number. Explain its significance in natural convection heat transfer **07**

State and explain Stefan Boltzmann law. Derive an expression for total emissive power 07 Q.5 (a) of a blackbody.

(b) Explain Kirchhoff's law.

OR

Q.5 (a) What is Wien's displacement law? Derive an expression for its relation. 07

(b) State and explain Lambert's cosine law of radiation..

07

07