Enrolment No.___

GUJARAT TECHNOLOGICAL UNIVERSITY

M.E –Ist SEMESTER–EXAMINATION – JULY- 2012

Subject code: 711507N

Subject Name: Numerical Methods

Time: 2:30 pm – 05:00 pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) List various methods for solution of linear simultaneous equations. Give 06 algorithm/flowchart of Gauss Elimination method.
 - (b) Solve following systems using any of the methods used for solution of linear 08 simultaneous equations. 10x + 2y + z = 9
 - 2x + 20y 2z = -44
 - -2x + 3y + 10z = 22
- Q.2 (a) Find one of the roots of the equation $\sin x + x 1 = 0$ to 3 decimal places 07 using Newton Raphson's method.
 - (b) Using the method of least squares, find the straight line y = ax + b, that fits 07 the following data:

Х	0.5	1.0	1.5	2.0	2.5	3.0
у	15	17	19	14	10	7

OR

(b) Fit the parabola of the form $y = a + bx + cx^2$ to the data given below, using 07 the method of moment.

Х	3	4	5	6	7
у	31.9	34.6	33.8	27.0	31.6

- Q.3 (a) Write an algorithm/flowchart for Newton's forward difference interpolation 07 formula.
 - (b) Using suitable interpolation formula, find the pressure for a temperature of 07 142 °C. The temperature v/s pressure data are given below.

Temperature in °C	140	150	160	170	180
Pressure, kgf/cm ²	3.685	4.854	6.302	8.076	10.225

OR

Q.3 (a) Derive basic formulation of plate analysis using finite difference method. 07

- (b) Using the finite difference method, compute the deflection at L/4 interval of 07 a simply supported beam subjected to uniformly distributed load. Take EI constant.
- Q.4 (a) Explain Eigen value problem showing some of the Structural Engineering 07 applications. Also illustrate the basic method for solution of eigen value problems.
 - (b) Determine the largest eigen value and corresponding eigenvector of the 07 matrix

$$A = \begin{bmatrix} 2 & 3 & 2 \\ 4 & 3 & 5 \\ 3 & 2 & 9 \end{bmatrix}$$

Total Marks: 70

Date: 11/07/2012

OR

Q.4 Find all the eigen values and their corresponding eigen vectors of the 14 following matrix using Jacobi's method.

$$A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

Q.5 (a) Find dy/dx and d^2y/dx^2 at x=1.6 for the different value of x & y tabulated as 07 given below:

37	1.0	1.0	1 4	1.(1.0	2.0	2.0
Х	1.0	1.2	1.4	1.6	1.8	2.0	2.0
Y	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

(b) Derive the Gaussian integration formula when n=2, and apply this formula to 07 evaluate the integral

$$\int_{-1}^{1} \frac{1}{1+x^2} dx$$

OR

- Q.5 (b) Explain with illustration various types of errors occur in computations. 06
 - (a) Solve following ordinary differential equation for x=0.5 given that y=0 at 08 x=0 by Picard's method.

$$\frac{dy}{dx} = x^2 + y^2$$
