GUJARAT TECHNOLOGICAL UNIVERSITY M.E –Ist SEMESTER–EXAMINATION – JULY- 2012

Date: 05/07/2012

Subject code: 712001N

Subject Name: Advanced Structural Analysis

Time: 2:30 pm – 05:00 pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- (a) Derive the flexibility matrix of portal frame by selecting H_d , M_d and V_d 08 **Q.1** taken as redundant reaction (fig. 1).
 - (b) Derive the stiffness matrix of beam as shown in fig. 2, with taking 06 rotations at supports taken as unknown.
- (a) Elaborate basic principles of sub structuring and its advantages. **Q.2** 07
 - (b) Considering non-linear deformation derive member stiffness matrix for 07 truss element.

OR

- (b) What are the methods available to solve simultaneous equation? 07 Elaborate with advantages.
- (a) Analyze the truss as shown in fig. 3 by flexibility method. The c/s areas 10 0.3 of members are as follows.

Member	Area (mm ²)
AB	6000
BC	6000
CD	6000
DE	3000
EF	3000
FA	3000
BF	3000
BE	3000
CF	3000
CE	3000

(b) Explain the concept of stiffness matrix method

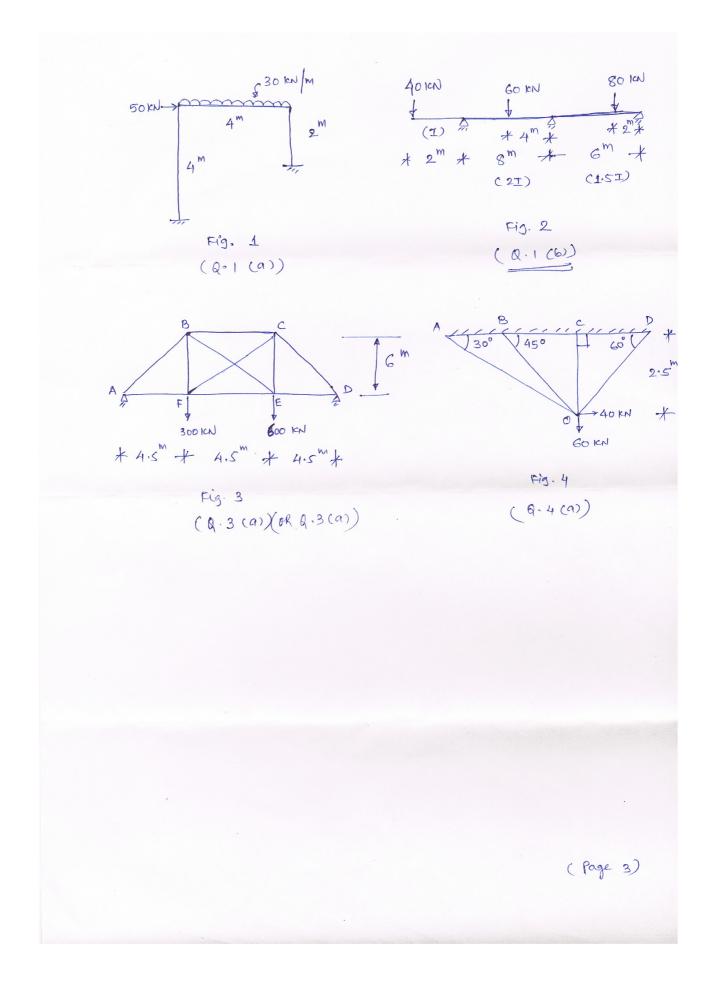
OR

04

- (a) Determine the forces in the truss as shown in fig. 3, due to rise in 0.3 10 temperature of entire truss by 20° . Coefficient of thermal expansion of the material of truss is $12 \times 10^{-6} / {}^{0}$ C.
 - (b) Derive basic stiffness matrix using the governing differential equation 04 and imposing the approximate displacement boundary condition.

Q.4	Analyze the truss as shown in fig. 4 by stiffness matrix method. Adopt	10
	c/s area of all members are 1000 mm ² and $E = 2 \times 10^5$ MPa.	

- (b) Explain the concept of rotation of axes in two dimensions. 04 OR
- (a) Explain the concept of flexibility method. **0.4** 07 07
 - (b) Explain the principle of virtual work with example.


Total Marks: 70

- Q.5 (a) Considering axial-flexural interaction derive the stiffness matrix of a 07 plane frame element.
 - (b) What are the methods available for non linear analysis? Elaborate 07 them.

OR

- Q.5 (a) Considering axial-flexural interaction derive the flexibility matrix of a 07 plane frame element.
 - (b) Explain the "Non linearity in structure" with typical examples. 07
