Seat No.:		
	GUJARAT TECHNOLOGICAL UNIVERSITY M.E –I st SEMESTER–EXAMINATION – JULY- 2012	
-	code: 712003N Date: 09/07/2012	
•	Name: Theory of Elasticity & Stability 2:30 pm – 05:00 pm Total Marks: 70 tions:	
2. M	ttempt all questions. Take suitable assumptions wherever necessary. Igures to the right indicate full marks.	
Q 1 (a)	Write basic equations of equilibrium, compatibility and stress-strain relations for a point in Cartesian coordinate system.	07
Q 1 (b)	The state of stress at a point with respect to xyz coordinate system is given by	07
	$[\tau_{ij}] = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 5 & 1 \\ 2 & 1 & 1 \end{bmatrix}$ KN / mm ² . Find the stress tensor relative to a new x'y'z' coordinate system obtained by a rotation through 30° about the z axis.	
Q 2 (a)	The stress tensor of a point is given by	07
Q 2 (b)	The state of stress at a particular point relative to the xyz coordinate system is given $\begin{bmatrix} \tau_{ij} \end{bmatrix} = \begin{bmatrix} 12 & 5 & 25 \\ 5 & 18 & 20 \\ 25 & 20 & 20 \end{bmatrix} \text{ N / mm}^2. \text{ Find the normal and shearing stresses with } \alpha_{nx} = 0.7$, $\alpha_{ny} = 0.8$ and $\alpha_{nz} = 0.5$.	07
Q 2 (b)	Find octahedral normal and shearing stress on an octahedral plane whose state of stress is $\begin{bmatrix} \mathbf{r}_{ij} \end{bmatrix} = \begin{bmatrix} 11 & 5 & 8 \\ 5 & 4 & 8 \\ 8 & 8 & 6 \end{bmatrix} \text{ N / mm}^2$.	07
Q 3 (a)	Explain the state of plane stress.	07
Q 3 (b)	Explain with neat sketch octahedral stress. OR	07
Q 3 (a)	Enlist various methods to solve two dimensional stress problems and explain the Airy Stress function method in brief.	07
Q 3 (b)	$ [\mathbf{\epsilon}_{ij}] = \begin{bmatrix} 0.002 & 0.002 & -0.002 \\ 0.002 & 0.004 & 0.0005 \\ -0.002 & 0.0005 & 0.002 \end{bmatrix} $. Find the strain invariants and principal strains.	07

Explain Saint Venant's Principle applicable for two dimensional beam problems. 07 Check whether $\varphi = A x^4 + B y^3 + C z^3$ is a valid stress function and examine the stress 07

Write basic equations of equilibrium, compatibility and stress-strain relations for 07

What do you mean by beam-column? Derive differential equation for beam-column 07

OR

Explain the classification of structures based on Stiffness and Geometry.

Q 4 (a) Q 4 (b)

Q 4 (a)

Q 4 (b)

Q 5 (a)

distribution represented by it.

with a concentrated central load.

plane strain condition in polar coordinate system.

07

Q 5 (b)	What do you mean by critical load? Enlist the assumptions made in Euler's column	07
	buckling theory of column and explain the limitation of theory of Euler's column	
	buckling.	
	OR	
Q 5 (a)	Derive the equation to calculate the critical load based on Euler's column buckling	07
	theory for the column having both the ends fixed.	
Q 5 (b)	Explain various parameters of safety and stability.	07
