GUJARAT TECHNOLOGICAL UNIVERSITY ME – SEMESTER-1 (NEW) EXAMINATION – WINTER 2016

Subject Code: 2711103Date:05/01/Subject Name: Advance Fluid MechanicsTotal MarkTime: 2:30 pm to 5:00 pmTotal Mark			
	ruction 1. 2. 3.	ns:	70
Q.1	(a) (b)	Derive the basic Navier-Stokes equation. Define terms: 1) vorticity 2) circulation 3) velocity potential function 4) stream function 5) irrotational flow 6) internal stress 7) viscosity	07 07
Q.2	(a) (b)	Derive Bernoulli's equation with usual notations. Explain principle of Superposition and give its application. OR	07 07
	(b)	Derive Euler's equation of motion.	07
Q.3	(a) (b)	Explain stokes and Ossen approximation with example. Derive boundary layer equation using approximate method. OR	07 07
Q.3	(a) (b)	Using momentum integral technique of boundary layer, derive Karman integral equation. Explain the mechanism of transition to turbulence and factors affecting it with	07 07
	()	remedy to control it.	
Q.4	(a)	Air enters a diffuser with a velocity of 200 m/s. Determine (1) the speed of sound and (2) the mach number at the diffuser inlet when the air temperature is $30 ^{\circ}$ C.	07
	(b)	Explain eddy viscosity concepts for turbulent flow. Also compare it for laminar flow using sketch of velocity gradients. OR	07
Q.4	(a) (b)	Derive Prandtl's mixing length equation. CO gas flows steadily through a varying cross-sectional area duct (nozzle) with mass flow rate of 3 Kg/s. The CO enters the duct at a pressure of 1400 kPa and 200 °C with a low velocity and it expands in the nozzle to a pressure of 200 kPa. The nozzle is designed so that the flow can be approximated as isentropic. Determine the density, velocity, flow area and Mach number at exit. Take $C_p = 0.846$ kJ/kg K, R= 0.1889 kJ/Kg K and γ =1.289.	07 07
Q.5	(a)	Explain normal shock using h-s diagram and compare with Fanno line and	07
	(b)	Rayleigh line. Explain chocked Rayleigh flow with example. OR	07
Q.5	(a) (b)	Write note on characteristics nature of turbulent flow. Define: Sonic flow, Supersonic flow, Mach cone, Stagnation pressure, Shock strength.	07 07