(b)

GUJARAT TECHNOLOGICAL UNIVERSITY ME – SEMESTER-1 (NEW) EXAMINATION – WINTER 2016

Subject Code: 2713007 Date:03/01/2017 Subject Name: Numerical Methods and Statistical Analysis for Chemical Engineering **Total Marks: 70** Time: 2:30 pm to 5:00 pm **Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. Using three parameter Antoine equation for vapor pressure of any component, develop 08 **O.1** (a) the linear regression expression for obtaining Antoine constants. Demonstrate the process with five data points. Discuss convergence criteria for single variable Newton-Raphson technique for **(b)** 06 solution of non-linear algebraic equation. **Q.2 (a)** For heat capacity of a component, data is generated experimentally. Develop the 07 linear regression expression for empirical model development. Fit the data point to linear relationship and estimate the error at x = 25. **(b)** 07 y х 5 0.530 10 0.716 15 0.806 20 0.869 25 0.943 30 1.013 35 1.096 40 1.160 OR

- (b) Obtain the multiple roots of $F(x) = \ln(x^2 + 1) e^{0.4x} \cos(\pi x) = 0$ using Newton-Raphson technique with incremental search for $-5 \le x \le 5$.
- Q.3 (a) Explain the method of cubic spline approximation to a function with working 07 equations.
 - Estimate $\frac{d^2 y}{dt^2}$ numerically at t = 1.5.

t	у	
0	0	
0.5	1.1875	
1	5.0000	
1.5	18.175	
2.0	52.0000	
2.5	122.1875	
3.0	249.0000	
OR		

1

- **Q.3** (a) Take a semicircle given by $F(x) = \sqrt{9 (x 5)^2}$, with centre at x = 5, y = 0, and radius of 3. Take three data points, (2,0), (5,3) and (8,0). Obtain the cubic splines.
 - (b) Using lagrangian interpolation, obtain an approximate third degree polynomial for the vapor pressure of acetone which could be used for $259.2K \le T \le 320.5K$.

T(K)	P(bar)
259.2	0.04267
273.4	0.09497
290.1	0.21525
320.5	0.74449

- Q.4 (a) Explain the Gauss Elimination technique for solution of simultaneous linear 07 equations and highlight its strengths and limitations.
 - (b) Develop the third order explicit Adams's integration formula for Ordinary 07 Differential Equations (ODE) with Initial Value Problems (IVP). What is the error term.

OR

Q.4	(a)	a) Show that the Lagrangian interpolation formula for 2 nd degree applied to equi-space data points gives the same result as Newton's forward difference formulae.		
	(b)	Give example of ODE with Boundary Value Problems (BVP) and explain Shooting method to solve it.	07	
Q.5 (a)		Explain the finite difference method with example for solution of PDEs.		
	(b)	Discuss Sampling Distributions and Confidence Interval for statistical analysis.	07	
		OR		
Q.5 (a)	(a)	Explain role of random variables for Stochastic Processes with example.	06	
	(b)	Explain Standard Deviation and Variance for Stochastic Processes along with	08	

their importance and practical application.