Seat No.: _____

Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY ME – SEMESTER-1 (NEW) EXAMINATION – WINTER 2016

Subject Code: 2713301 Date:03/01/2017 Subject Name: Numerical Methods for Civil Engineering **Total Marks: 70** Time: 2:30 pm to 5:00 pm **Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 0.1 Define absolute and percentage errors. Let the exact value be 19/6 and its 07 (a) approximate value is 3.166. Find the relative and percentage errors. Also find the number of significant digits. Discuss false-position method graphically. Find real root of $x^3+15x-20=0$, 07 **(b)** correct up to three decimal places using the same. **O.2** Determine one of the roots of the equation $x \log_{10} x - 0.77 = 0$ to three decimal 07 (a) places using Newton Raphson's method. Calculate the free joint displacement, D, of a plane frame whose stiffness **(b)** 07 matrix, S, and load vector, A, is given as below. Use Gauss-Jordan method. Note A=SD. $S = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 4 \\ 4 & 3 & 2 \end{bmatrix}$ and, $A = \begin{bmatrix} 8 \\ 20 \\ 16 \end{bmatrix}$ **(b)** Explain convergence criteria for Gauss- Seidal method. Use it to solve the 07 system correct up to four decimal places. 2x + 2y + 18z = 1030x - 2y + 3z = 20x + 17y - 2z = 30Q.3 **(a)** Determine the largest Eigen value and corresponding eigenvector of the matrix 07 $\begin{bmatrix} 2 & 3 & 1 \\ 3 & 4 & 5 \\ 1 & 2 & 4 \end{bmatrix}$ Find f(9) using Lagrange's interpolation formula for following data. **(b)** 07

x	4	5	8	10					
f(x)	370	-2	190	501					
OR									

- **Q.3** (a) Solve $5\frac{dy}{dx} = x^2 + y^2$ using Runge-Kutta method of fourth order in the interval **07** of $0 \le x \le 0.4$, taking h=0.1 and y(0)=1.
 - (b) Use the finite difference approach with $\Delta x = 2m$ to solve the boundary value 07

problem given below. Given y(0)=5 and y(10)=8.

$$4\frac{d^2y}{dx^2} - 3\frac{dy}{dx} - y + x = 0$$

Q.4	(a)	Determine the numerical value of integration of log ₁₀ x for limit 1 to 2, using three- point Gauss-Quadrature rule.	07
	(b)	Explain the use of Eigen value problem in Structural Engineering. Give basic	07
		steps for solution of Eigen value problem.	
		OR	
Q.4	(a)	Use modified Euler's method of second order to find $y(1.5)$, given that	07
		$\frac{dy}{dx} = 4xy, \ y(1)=1 \text{ with } h = 0.1.$	
	(b)	What is numerical integration? Derive Trapezoidal and Simpson's 1/3 rule.	07
Q.5	(a)	List various methods for interpolation and extrapolation of values. Explain any	07
		one method, which is used for unevenly spaced interval.	
	(b)	Using the finite difference method, compute the deflection at $L/4$ interval of a	07

(b) Using the finite difference method, compute the deflection at *L*/4 interval of a simply supported beam subjected to uniformly distributed load 'w' per unit run throughout the span '*L*'. Take *EI* constant.

OR

Q.5 (a) The voltage, *V*, across a capacitor at time *t* second is given by the following table. Use the method of least square to fit a curve $V = ae^{kt}$ to this data.

t	0	2	4	6	8
V	145	58	23	7	0.6

(b) Explain the Laplace Transform method.

07