

GUJARAT TECHNOLOGICAL UNIVERSITY ME – SEMESTER II– EXAMINATION – WINTER - 2016			
Su	ıbject	Code: 2720715 Date: 18/11/ 20)16
Subject Name: Electrical Machine Modeling and Analysis			
Ti	me: 2	2:30 pm to 5:00 pm Total Marks:	70
Instructions:			
	1. 2.	Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks	
Q.1	(a)	Explain the modeling of electromechanical energy conversion that takes place in electromagnetic circuit.	07
	(b)	Define energy and co-energy in an electromechanical energy conversion. Derive the expression for the field energy in terms of system variables.	07
Q.2	(a)	Derive winding inductances and voltage equations for Synchronous machine. Mention assumptions made for derivation.	07
	(b)	Analysis the steady state operation of synchronous machine. OR	07
	(b)	Discuss the need of dynamic modeling of IM, the necessary assumptions and approximations. Also discuss the shortcoming of the IM dynamic model from view point of losses	07
Q.3	(a)	Explain dynamic performance of a induction during the sudden change in input torque.	07
	(b)	Derive the torque equation in machine variables of PMBLDC machine. OR	07
Q.3	(a)	Explain the significance of reference frame theory, discuss various frames of references thus used and transformation between different refence frames	07
	(b)	Derive the torque equation a three phase IM in synchronously rotating reference frame	07
Q.4	(a)	Obtain the expression of torque for a three phase dynamic model of IM in terms of stator and rotor Flux Linkages in stationary reference frame	07
	(b)	Derive voltage equations for Synchronous machine in rotor reference frame. OR	07
Q.4	(a)	Analysis the Synchronous machine performance when a three phase fault occurs at the machine terminals using dynamic model	07
	(b)	Derive the per unit model of induction motor using stator and rotor flux linkages	07
Q.5	(a) (b)	Derive the torque equation in machine variables for a synchronous machine Explain the performance of synchronous machine during sudden change in load torque using dynamic model.	07 07
Q.5	(a) (b)	Explain in brief the procedure of linearization of machine equations Derive the voltage and Torque equation in rotor reference frame variable of BLDC Machine.	07 07
