GUJARAT TECHNOLOGICAL UNIVERSITY ME – SEMESTER II– EXAMINATION – WINTER - 2016

Subject Code: 2724111 Date: 18/12			/ 2016 ks: 70	
Subject Name: STATISTICAL SIGNAL PROCESSING Time: 2:30 pm to 5:00 pm Total Marks Instructions:				
	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a) (b)	 Define the following terms: Random variables. Sample mean Joint moments Mean ergodic theorem-I Wiener Hopf Equations for FIR fitler Linear prediction using FIR weiner filter Moving Average Process(MA Process) What do you mean by ergodic process? State mean ergodic theorem I and mean 	07	
0.2	(a)	ergodic theorem II with suitable mathematics. Compute the power spectrum of a random process with autocorrelation $r_{i}(k) =$	07	
Q.2	(a)	Compute the power spectrum of a random process with autocorrelation $T_x(k) = \alpha^{ k }$, where $ \alpha < 1$.	07	
	(b)	Determine whether or not the following are valid autocorrelation matrices. If they are not, explain why not. $R1 = \begin{bmatrix} 2 & j & 1 \\ -j & 4j & -j \\ 1 & j & 2 \end{bmatrix}, R2 = \begin{bmatrix} 1 & 1+j \\ 1-j & 1 \end{bmatrix}$ OP	07	
	(b)	Write a short note on Linear prediction. Derive the FIR Linear predictor.	07	
Q.3	(a)	Define power spectrum of a random process. Explain the properties of power	07	
	(b)	spectrum with suitable mathematical steps. What is an Autoregressive (AR) Process? Derive the Yule Walker equations for AR process.	07	
Q.3	(a)	Derive the wiener-Hopf equation and minimum mean square error for Non causal	07	
	(b)	IR Wiener Filter. Explain spectrum factorization in detail with suitable mathematics.	07	
Q.4	(a)	Let X_1, X_2, \dots, X_N are independent identically distributed sequence of $N(\mu, \sigma^2)$ distributed random variables. Find Maximum Likelihood estimator(MLE) for μ	07	
	(b)	Explain the maximum entropy method for power spectrum estimation in detail.	07	
Q.4	(a) (b)	Write a short not on Bayesean Estimators. Let $x(n)$ be an AR(1) process with an autocorrelation sequence $r_x(k) = \alpha^{ k }$ with $0 < \alpha < 1$, with a first order predictor of the form $\hat{x}(n-1) = w(0)x(n) + w(1)x(n-1)$. Find out the optimum linear predictor using FIR Wiener filter.	07 07	
Q.5	(a)	Compare RMS and LMS algorithms.	07	

Q.5 (a) Compare RMS and LMS algorithms.

1

(b) Explain Welch's method for Power spectrum estimation with suitable 07 mathematics.

OR

- Q.5 (a) Explain adaptive LMS algorithm in detail with suitable derivations.
 (b) Explain Bartlett method for power spectrum estimation with suitable 07
 - 07 mathematics.
