GUJARAT TECHNOLOGICAL UNIVERSITY					
Subject	M. E SEMESTER – II • 1 2010 - 2724200	EXAMINATION – WINTER • 2016 Data: 10 11 2016			
Subject code: 2724209		Date: 19-11-2010			
Subject Name: VLSI Signal Processing					
Time: 0	2:30 pm - 05:00 pm	Total Marks: 70			
Instructions					
1.	Attempt all questions.				
2.	Make suitable assumptions wherever	necessary.			
3.	Figures to the right indicate full mark	S.			
Q.1 (a)) Define Following terms in reference to VLSI Signal Processing.				
	1. Iteration	5. Cutset			
	2. Iteration Period	6. Critical Path			
	3. Loop Bound	7. Feed Forward Cutset			
<i></i>	4. Critical Loop				
(b)	Derive the expression for clock period	in wave pipelining.			
Q.2 (a)	Prove that Unfolding preserves the num	ber of delays in a DFG.			
(b)	Compute iteration bound of the system technique.	, represented by DFG given in Figure 1 using LPM			

 $d_1 \quad d_2$ d_3 (3) (2) (1) 2 D D D 4 3 (2) Figure 1

OR

		UN	
	(b)	Why use Parallel Processing when Pipeline Processing can be used equally well? Briefly explain with example.	07
Q.3	(a)	Discuss Redundant Number Representation.	07
	(b)	Compare Pipelining & Parallel Processing for VSP.	07
		OR	
Q.3	(a)	Discuss Data Format Conversion.	07
	(b)	Explain in detail pipeline concept used in sequential circuits.	07
Q.4	(a)	Explain Fast Convolution.	07
	(b)	What is the need for systolic architecture design? Discuss systolic architecture design in detail.	07

Seat No.: _____

Enrolment No._____

07

07

07 07

OR

Q.4 (a)	Define systolic design methodology. Compare it with other design methodologies.	07
(b)	Briefly explain the algorithm of unfolding.	07
Q.5 (a)	Write a note on Wave Pipelining.	07
(b)	Discuss Multiple Constant Multiplications.	07
	OR	
Q.5 (a)	Discuss Power Reduction Techniques.	07

- Q.5 (a) Discuss Power Reduction Techniques.
 - (b) Apply the unfolding technique to DSP algorithm given in Figure 2 with unfolding factor equal to 4. 07

Figure 2