Seat No.: _

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY ME – SEMESTER III (NEW) – EXAMINATION – WINTER-2016

Subject Code: 2731105

Subject Name: DESIGN OF HEAT EXCHANGER

Time:02:30 pm to 05:00 pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- A heat exchanger is to be designed to heat raw water by the use of condensed 07 **Q.1** (a) water at 67 °C and 0.2 bar, which will flow in the shell side with a mass flow rate of 50,000 kg/hr. The heat will be transferred to 30,000 kg/hr of city water coming from a supply at 17 °C (c_p = 4184 J/kg K). A single shell and a single tube pass are preferable. A fouling resistance of 0.000176 m² K /W is suggested and the surface over design should not be over 40 %. A maximum coolant velocity of 1.5 m/s is suggested to prevent erosion. A maximum tube length of 5 m is required because of space limitations. The tube material of carbon steel (k=60 W/m K). Raw water will flow inside straight tubes whose outer diameter is 19 mm and inner diameter is16 mm. Tubes are laid out on a square pitch with a pitch ratio of 1.25. The baffle spacing is approximated by 0.6 of shell diameter and the baffle cut is set to 25%. The water outlet temperature should not be less than 40 °C. Consider shell side heat transfer coefficient 5000 W/m2K and tube side it is 4000 W/m2K. Perform Preliminary analysis.
 - (b) Name the recent correlation used for design methods of condenser and evaporator for Air conditioners and refrigerators and explain any one of them in detail.
- **Q.2** (a) Determine the overall heat transfer coefficient for liquid to liquid heat transfer **07** through a 0.003 m thick steel plate (k = 50 W/m K) for the following heat transfer coefficients and fouling factor on one side: (a) $h_i = 2500 \text{ W/m}^2 \text{ K}$, $h_o = 1800 \text{ W/m}^2 \text{ K}$, $R_{fi} = 0.0002 \text{ m}^2 \text{ K/W}$ (b) Replace one of the flowing liquids in (a) with a flowing gas ($h_o = 50 \text{ W/m}^2 \text{ K}$), (c) Replace the remaining flowing liquid in (a) with another flowing gas ($h_i = 20 \text{ W/m}^2 \text{ K}$). Comment on the results obtained for the resistances in each case.
 - (b) Explain various types of baffles used in shell and tube type of heat exchangers. 07
 OR
 - (b) Discuss Bell-Delaware method taking into account the effect of various leakage 07 and bypass steams to evaluate shell side heat transfer co-efficient.
- **Q.3** (a) Explain strategy for Fouling consideration in various heat exchangers. **07**
 - (b) What are recuperators and regenerators? Classify the heat exchanger according 07 to recuperation/regeneration.

OR

Q.3	(a)	What is fouling? Explain types and mechanisms of fouling.	07
	(b)	Answers the following:	07
		1. Why are the counter flow heat exchangers the most efficient?	
		2. Under what conditions can a double pipe heat exchanger replace a shell and tube heat exchanger?	
		3. Draw a parallel and series arrangements of hairpin heat exchanger.	
04	(9)	Explain the basic steps of thermal and hydraulic design of inner tube and	07

Q.4 (a) Explain the basic steps of thermal and hydraulic design of inner tube and 07 annulus of double pipe heat exchanger.

Date:25/10/2016

(b) Explain the method of calculating pressure drop for finned-tube and plate fin 07 exchangers.

OR

Q.4	(a)	Explain the procedure of calculating total pressure drop in double pipe heat	07
	(b)	exchanger. What is compact heat exchanger? State its advantages and disadvantages.	07
Q.5	(a)	How do you enhance the heat transfer rate in Compact heat exchanger? Explain	07

- - (b) Explain the requirements suggested by Muller and Taborek while selection and 07 design of condensers.

OR

Q.5	(a)	Explain pinch analysis for heat exchanger.	07
	(b)	Explain in details about chillers and air coolers.	07
