Sea	t No.:	Enrolment No		
200		GUJARAT TECHNOLOGICAL UNIVERSITY ME – SEMESTER IV (NEW) – • EXAMINATION – WINTER 2016		
Subject Code: 2744202 Subject Name: Power Efficient VLSI Design		Code: 2744202 Date: 26/10/20	Date: 26/10/2016	
Ti	ne:0	2:30 pm to 05:00 pm	70	
		Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	Compare Power and Energy. What is more important Low Power or Low Energy? Explain in detail source of power dissipation in CMOS.	07	
	(b)	Discuss Monte Carlo Simulation Technique for power estimation with necessary expressions.	07	
Q.2	(a)	Illustrate the effect of wire widening and intermediate buffer insertion on delay reduction using mathematical expression.	07	
	(b)	Explain low dynamic power techniques. OR	07	
	(b)	Compare SPICE simulation based power simulation v/s statistical based power estimation techniques.	07	
Q.3	(a)	Derive mathematical expression to avoid negative tolerable skew and positive tolerable skew.	07	
	(b)	Explain Self-Reverse Biasing. OR	07	
Q.3	(a)	Discuss the effect of process variation on the performance of clock distribution network.	07	
	(b)	Why n-well CMOS Process? Why not p-well CMOS Process?	07	
Q.4		What is Glitch? Discuss various techniques used for glitch reduction in low power design.	07	
	(b)	Discuss in brief the effect of transistor and gate sizing for Power Efficient VLSI Design.	07	
		OR		
Q.4	(a) (b)	Explain Power and Performance Management. Explain algorithm level analysis and optimization.	07 07	

ORCompare various trade-offs in VLSI Circuit Design in detail and explain the

(a) Explain Multi -V_T Technique.

(b) Discuss Tolerable Skew v/s Zero Skew.

importance of speed-power trade-off in VLSI Design.

(b) Discuss architectural level estimation and synthesis.

Q.5

Q.5

07

07

07

07