GUJARAT TECHNOLOGICAL UNIVERSITY ME – SEMESTER-1(OLD COURSE) EXAMINATION – WINTER 2016

Subject Code: 710703N Date:			19/11/2016	
Su Tii Inst	bject me:1 tructio 1. 2. 3.	t Name: MODERN CONTROL SYSTEMS 0:30 Am to 1:00 Pm Total ons: . Attempt all questions. . Make suitable assumptions wherever necessary. . Figures to the right indicate full marks.	Marks: 70	
Q.1	(a)	Define and discuss the concept of state, state variables, state vector, state	te space 07	
	(b)	Write and prove the properties of the State Transition Matrix (STM).	07	
Q.2	(a)	Obtain the transfer function of the system defined by $ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u $	07	
	(b)	$y=\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \end{bmatrix}$ Consider the following transfer function system: $\frac{Y(s)}{U(s)} = \frac{s+6}{s^2+5s+6}$ Obtain the state space representation of this system in (a) Controllable of form and (b) Observable canonical form	07 canonical	
	(b)	OR Compute e^{At} of the following matrix.	07	
Q.3	(a)	$\begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$ Show that the following system is not completely observable: $\dot{x} = Ax + Bu$ y = Cx Where, $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 4 & 5 & 1 \end{bmatrix}$	07	
	(b)	Derive the condition for checking the Controllability for a given system	ı. 07	
Q.3	(a) (b)	OR Prove that the Eigen values are invariant under a linear transformation. Is the following system completely state controllable? $ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u $ $ y = \begin{bmatrix} 20 & 9 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} $	07 07	
Q.4	(a)	Explain the variable gradient method for the determination of liapunov	07	
	(b)	Obtain the time response of the following system :	07	

1

 $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}$ Where u(t) is the unit step function occurring at t=0 or, u(t) = 1(t)

OR

(a) Define the Sylvester's criterion for checking the definiteness and also check the Q.4 07 definiteness of the following functions $V(x) = x_1^2 + 2x_2^2$ $V(x) = 10x_1^2 + 4x_2^2 + x_3^2 + 2x_1x_2 - 2x_2x_3 - 4x_1x_3$ (b) Explain the principle of duality that clarify apparent analogy between 07 controllability and observability. (a) Design a state feedback controller gain using pole placement technique for the Q.5 07 system given by $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} \mathbf{u}$ The desired pole locations of the closed loop system are s = -3 and s = -5(b) Express matrix A as a sum of symmetric and a skew 07 symmetric matrix where, $A = \begin{bmatrix} 2 & 3 & -3 \\ 5 & 6 & -6 \\ -7 & 0 & -9 \end{bmatrix}$ Q.5 (a) Explain design of control system with observers. Briefly discuss both 07 Configurations i.e. observer controller in feed forward path and in feedback path.

(b) Prepare a technical note on "Application of Kalman's test"

07