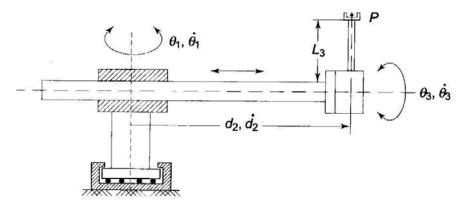

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – II • EXAMINATION – WINTER 2012


Subject code: 1720906 Date: 02-01-2 Subject Name: Robotics)13	
Time	ne: 10.30 am – 01.00 pm Total Marks: 70 structions:		
	2.]	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	What is Robot? Explain laws of robotics and classify robot based on	07
	(b)	generation. Short note: Application of robots for Material Handling	07
Q.2	(a) (b)	Explain the types of controller for robot motion control. For a two segment spline with continuous acceleration at via point, solve for the coefficient of the two cubic, given the requirements as $_0=8^\circ$, $_v=12^\circ$, $_g=30^\circ$. Take the time of each segment as 2 sec.	07 07
	(b)		07
Q.3	(a)	Define following technical terms in robotics: 1. Accuracy 2. Repeatability 3. Play back robot 4. Resolution	07
	(b)	Short note: Robot joint control design. OR	07
Q.3	(a) (b)	-	07 07
Q.4	(a) (b)	Classify the different gripper mechanisms. For a given manipulator, are the velocity Jacobian and static force Jacobian different? Explain your answer with an example.	07 07
Q.4	(a) (b)	Describe different Joint-Link Parameters of the link. A Frame {2} rotates with respect to frame {1} about z-axis by an angle 30^{0} . The position of the origin of frame {2} as seen from frame {1} is $[7, 5, 7]^{T}$. Obtain the transformation matrix ${}^{1}T_{2}$. Also find the description of point P in	06 08

frame {1} if position vector ${}^{2}P=[5, 8, 3]^{T}$.

Q.5 Establish orthonormal link coordinate systems for the PUMA 560 robot arm 14 shown in figure below and complete the DH table. Also derive homogeneous transformation matrix for end-effector.

OR Q.5 For manipulator shown in figure below, obtain the Jacobian matrix.

14