GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER - II • EXAMINATION - WINTER 2012

Subject code: 1721507 Subject Name: Advanced Steel Structure Design Time: 10.30 am – 01.00 pm

Date: 02-01-2013

Total Marks: 70

07

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of IS:800, IS:801, IS:811, IS:875, IS:1893 and Steel Table is permitted.
- Q.1 Calculate design wind forces using gust factor approach on a steel 14 multi-storey building 60m tall with plan size 12m x 24m to be constructed in Mumbai about 200m from sea shore. Assume average storey height to be 3.0m. The frames are to be spaced at 6m c/c in both directions. The building has its smaller dimension facing the sea.
- Q.2 (a) List various structural systems of steel buildings. Explain briefly 07 framed tube system and trussed tube system
 - (b) Explain important mechanical properties of steel with reference to 07 various loads like static load, impact load and repeated load.

OR

(b) Describe the advantages of cold form steel sections

Q.3 A through type Pratt truss bridge has simply supported span of 32m 14 with ten panels each of 4m. Top chord joints are U_1 to U_9 while bottom chord joints are L_0 to L_{10} . Diagonal members are 45⁰ inclined to bottom chord. Design any three of following members when a train of 40kN/m longer than span passes from left to right: U_3U_4 , L_2L_3 , U_2L_3 and U_1L_1 .

OR

- Q.3 A warren type truss has 18m span with six panels of 3m each and 14 height is 2.6m. Top chord joints are U_1 to U_6 while bottom chord joints are L_0 to L_7 . Design members U_3U_4 , L_3L_4 , and U_3L_3 while a when a train of 30kN/m longer than span passes from left to right.
- Q.4 Design a floor joist consists of two channels welded back to back to 14 form a stiffened I-section. The effective span of joist is 4.8m. The joist is carrying UDL of 6.4 kN/m and one central point load of 8 kN. Use cold formed light gauge steel section. Design should confirm IS:801-1975.

OR

- Q.4 Top chord of welded cold formed light-gauge steel roof truss has 14 average member length 2.5m and subjected to maximum compressive force of 16kN. Proportionate suitable cross-section of chord which should confirm all checks as per IS:801-1975 codal provisions
- Q.5 (a) Explain the general behavior of a beam column and compare the same 07 with beams and columns
 - (b) A non-sway column in a building frame with flexible joints is 4m high 07

and subjected to the following load and moment: Factored axial load = 500 kN Factored moment at top of column = 27.0 kNm and Factored moment at bottom of column = 45.0 kNm Design a suitable beam-column assuming $f_y = 250 \text{ N/mm}^2$. Take the effective length of the column as 0.8L along both the axes.

OR

- Q.5 A simply supported plate girder with effective span of 30m is subjected to uniformly distributed load of 32kN/m and two concentrated load of 300 kN at 1/3 of span. Considering fully restrained condition at both the ends against lateral buckling through out the span
 - (a) Design a section with flange plates and 8mm thick web plate. 08
 - (b) Design for curtailment of flanges and design vertical and/or horizontal 06 stiffeners (whichever is applicable).
