GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – II • EXAMINATION – WINTER 2012

	Subject code: 1722202 Date: 31-12-2012 Subject Name: Advance Digital Communication				
Tim	e: 1	0.30 am – 01.00 pm Total Marks: 70 tions:			
111,51		Attempt all questions. Make suitable assumptions wherever necessary.			
Q.1	(a)	Explain representation of band-pass signals and systems in terms of equivalent low-	07		
	(b)	(i) M-ary PSK receiver	07		
Q.2	(a)	 (ii) QAM receiver. Following figure displays the waveforms of four signals s₁(t), s₂(t), s₃(t) and s₄(t). (i) Using the Gram- Schmidt orthogonalization procedure, find an orthonormal basis 	07		
		for this set of signals (ii) Construct the corresponding signal- space diagram			
		$s_1(t)$ $s_2(t)$ $s_3(t)$ $s_4(t)$			
		$1 \qquad 1 \qquad$			
	(b)	 Write short notes on (i) Orthogonal Multidimensional Signals (ii) Simplex Multidimensional Signals 	07		
	(b)	OR Derive equations of Basis functions and Euclidean distance for $\pi/4$ QPSK digital modulation technique. Draw the constellation diagram for same. Find the bit energy if amplitude of $\pi/4$ QPSK modulated signal 2V peak to peak and 2µs over which	07		
Q.3	(a)	symbols exists. State different types of memoryless modulation methods. Explain one of in detail.	07		
	(b)	Explain in detail with analysis correlation type demodulator for optimum receiver OR	07		
Q.3	(a)	State different types of nonlinear modulation methods with memory. Explain one of in detail.	07		
Q.4	(b) (a)	Explain in detail with analysis Matched-filter type demodulator for optimum receiver Explain in detail with analysis symbol by symbol detector for signals with memory used for optimum receiver.	07 07		
	(b)	Evaluate the probability of error for M-ary PAM	07		
Q.4	(a)	OR Explain in detail with analysis maximum likelihood sequence detector for optimum	07		
Q.4	(b)	receiver. Evaluate the probability of error for M-ary PSK	07		

Q.5 (a) Write short notes on "Design of band-limited signals with no ISI"

1

07

(b)	Define equalizer and list various types of equalization methods. Discuss the error	07			
	rate performance of linear MSE equalizer.				

OR

Q.5	(a)	Write short notes on "Design of band-limited signals with controlled ISI"	07
	(b)	Give answer of following questions	07
		(i) Describe a discrete-time model for a channel with ISI with an example.	
		(ii) List the key features of OFDM system.	
