GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER 2012

Subj Tim	ect Na e: 02.3 ruction 1. At 2. M	de: 710106N Date: 16-01-2013 me: Information Theory & Coding (Elective) 0 pm – 05.00 pm Total Marks: 70 ns: ttempt all questions. ake suitable assumptions wherever necessary. gures to the right indicate full marks.	
Q.1	(a)	 i) Discuss the conditional probabilities of random variables. ii) A binary symmetric channel (BSC) error probability is P_e. The probability of transmitting 1 is Q, and that of transmitting 0 is 1-Q. Determine the probabilities of receiving 1 and 0 at the receiver. 	03 04
	(b)		03 04
Q.2	(a)	 i) State and prove Central limit theorem. ii)Consider a communication system that transmits a data packet of 1024 bits. Each bit can be in error with probability of 10⁻¹². Find the probability that more than 30 of the 1024 bits are in error. 	03 04
	(b)	Find the response of a Linear Time-Invariant system to a random input signal.	07
	(b)	OR What are different Stochastic processes? Discus Cyclostationary processes.	07
Q.3	(a)	 The source alphabets A,B,C,D,E,F appear with probabilities 0.4, 0.1, 0.1, 0.1, 0.1, 0.2, 0.1 respectively. i) Find a binary Huffman code. ii) Find ternary Huffman code. iii) Compare the efficiencies of both the above. 	07
	(b)	For a systematic linear block code, the three parity check digits, C ₄ , C ₅ , C ₆ are given by $C_4=d_1 \oplus d_2 \oplus d_3$, C ₅ = $d_1 \oplus d_2$, C ₆ = $d_1 \oplus d_3$ i) Construct G ii) Construct code generated by this matrix matrix iii) Prepare suitable decoding table	07
		iv)Decode the received word: 000110 OR	

Q.3 (a) The parity check matrix of a particular (7,4) linear block code is Given by

		1	1	1	0	1	0	0	7
Η	=	1	1	0	1	0	1	0	
		1	0	1	1	0	0	1	

		i) Find G and list all code words	
		ii) How many errors can be detected and corrected?	
	iii) Prepare syndrome table.		
	(b)	i) In convolutional coding, why is flushing of the register	04
	periodically performed.	•	
		ii) What is a finite state machine?	03
			00
Q.4	(a)	Write a short note on cyclic codes also mention advantages and	07
	()	disadvantages.	
	(b)	6	03
	()	the symmetric property i.e. $I(x_i; y_k) = I(y_k; x_i)$.	
		ii) Prove that instantaneous codes always satisfy the Kraft's	04
		inequality.	
		OR	
Q.4	(a)	i) What are Hamming Codes? What are their properties?	04
	()	ii) Prove that $GH^{T} = HG^{T} = 0$ for systematic Linear Block Code.	03
	(b)	•	07
	()	an example.	
		1	
Q.5	(a)	Discuss soft-decision Viterbi decoding.	07
	(b)	Describe any one decoding technique for the binary double error correcting	07
	(0)	BCH codes.	07
		OR	
Q.5	(a)	i) What are various security goals of Information system?	03
-	. /	ii) Explain Data Encryption Standard scheme.	03
	(b)		08
		i) Rice distribution	
		ii) Markov chain	
		·	

07