GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER 2012

Subject code: 710201NDate: 08-01-2013Subject Name: Computer Algorithm			
Time: 02.30 pm – 05.00 pm Total Marks: 70 Instructions:			
11150	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Explain worst case, best case and balanced partitioning of quick sort with example.	07
	(b)		07
Q.2	(a)	State whether the following statements are true or false. Justify. 1) $100 n + 5 \neq \Omega(n^2)$ 2) $1000 n^2 + 1000n = O(n^2)$	07
	(b)	Explain any one linear time sorting algorithm with example. OR	07
	(b)	Explain the recurrence tree method using example.	07
Q.3	(a)	Answer the following:1) Show that an n-element heap has height lg n.2) Is an array that is in sorted order a min-heap? Is the sequence {25, 16, 15,	07
	(b)	6, 13, 11, 3, 5, 8, 12} a max-heap? Differentiate between AVL tree and Red-Black tree. Construct Red-Black tree for given data: 60, 45, 34, 12, 25, 8 OR	07
Q.3	(a)	Perform chained matrix multiplication for four matrices of dimensions <5, 4, 6, 2, 7> using dynamic programming.	07
	(b)	Explain fractional knap-sack using greedy algorithm with example.	07
Q.4	(a)	Define B-tree. Construct B-tree of order 4 for given data: F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A.	07
	(b)	Explain knap sack using backtracking with example.	07
Q.4	(a)	Define Fibonacci heap. Explain decreasing a key algorithm with suitable example.	07
Q.4	(b)	Explain Kruskal's algorithm with example. Discuss the complexity of Prim's and Kruskal's algorithm.	07
Q.5	(a) (b)	Write sequential and parallel algorithm to find n!. Explain Rabin-Karp string matching algorithm using example. OR	07 07
Q.5	(a) (b)	Explain bitonic sequence and bitonic parallel sorting network using example. Explain P and NP-class problems through example.	07 07