GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER - I • EXAMINATION - WINTER 2012

Subject code: 710903NDate: 12-01-Subject Name: Engineering Optimization			
Tim	ne: 02	2.30 pm – 05.00 pm Total Marks: 70 tions:	
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a) (b)	What is the difference between linear and nonlinear programming and what is the difference between design variables and pre-assigned parameters? Define: Design space, feasible region, active constraints, constrained surface and behavior constrained.	07 07
Q.2	(a)	Determine the maximum and minimum value of the function.	07
	(b)	Determine the maximum and minimum value of the function. $f(X) = 12X^{5} - \frac{145}{145}X^{4} + 40X^{3} + 5$ Minimize $f(X) = 2X^{2} + \frac{16}{X}$ using Newton's Rapson method. OR	07
	(b)	Minimize $f(X) = (100 - X^2)$ in an interval of (60 150) using golden section method.	07
Q.3	(a)	Find the minimum of $f(X) = 4X^3 - 20X + 4$ using quadratic interpolation method.	07
	(b)		07
Q.3	(a)	OR How do you classify optimization problem based on nature of design variable	07
	(b)	explain by taking example. Maximize $Z = 3X_1 - X_2$ Subject to $2X_1 + X_2 \ge 2$	07
		$X_1 + 3X_2 \le 3$	
		$X_2 \le 4$	
		$X_1 \ge 0$	
Q.4	(a)	Find the minimum of the function $f = X^3 - 2X + 10$ by the Newton's method	07
	(b)	with the starting value of $X_0=1$ carry out at least 5 integrations. State whether each of the following function is convex, concave or neither.	07
		$a) f(X) = e^{X}$	
		$b) f(X) = e^{-X}$	
		$c)f(X) = \frac{1}{x^2}$	
0.4		d) $f(X) = X + \log X \text{ For } X > 0$ OR Find the maximum function of the	14
Q.4		Find the maximum function of the $f(X) = 8X_1 + 10X_2 - X_1^2 - X_2^2$	14

1

Subject to
$$3X_1 + 2X_2 \le 6$$

 $X_2 \ge 0$
 $X \ge 0$

Using Kuhn Tucker conditions.

Q.5	(a)	Use Fibonacci search method to find the minimum of	07
		$f(X) = X^{2} + \frac{54}{X}$ In the intermediat (0, 5) with 2 store	
		In the interval of $(0, 5)$ with 3 steps.	
Q.5	(b)	Explain GA in details.	07
		OR	
	$\langle \rangle$		~

(a) Explain any one constrained optimization techniques
 (b) State the necessary and sufficient conditions for the unconstraint minimum of 07 function.
